EAGER: Quantum Manufacturing: 3D Microfabricated Ion Traps
EAGER:量子制造:3D 微制造离子阱
基本信息
- 批准号:2240291
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Engineered quantum devices promise to revolutionize communication, sensing, and computation, but these systems must increase in size by orders of magnitude if they are to be useful for real-world problems. In particular, trapped atomic ions are a leading platform for quantum information processing. These ions are trapped in dc and rf electric potentials, controlled with lasers, and measured optically. However, current approaches to ion trapping face a tradeoff between scalability and trap quality (e.g., the depth and uniformity of the trapping potential). This EArly-concept Grant for Exploratory Research (EAGER) Quantum Manufacturing award supports development of a new ion trap architecture providing both electrical and optical control, without sacrificing manufacturability. Silicon fabrication techniques will be explored to create electrodes that increase optical access, a multi-wafer alignment and bonding process will improve trap quality, and thin focusing optics will be directly fabricated and aligned with the trapping electrodes. These advancements will enable trapping, controlling, and measuring thousands of individual ions across a centimeter-scale device. This work represents the first steps towards defining the manufacturing process for a trapped ion quantum computer. Additionally, the growing quantum industry will need a trained workforce to design, build, and test these next-generation devices. By participating in the research, students will be trained in pertinent skills and develop a quantum literacy. Special effort will be made to broaden participation of underrepresented populations by joining with existing efforts at the University of Washington.This project aims to develop a manufacturing process capable of reliably integrating electrical and optical components necessary for high fidelity, scalable quantum computing with trapped ions, closing the gap between the trapping characteristics and the scalability of the design. Research will focus on development of a reproducible fabrication process for ion traps with simultaneously high trap depth, voltage efficiency, and optical access. Research in and development of advanced Silicon fabrication techniques will achieve overhanging electrodes and backside routing. Multi-layer wafer traps will provide high quality trapping potentials, and electrostatic simulations will inform manufacturing tolerances. Finally, planar focusing optics for improved collection and control will be designed and lithographically aligned to electrodes by direct patterning of handle wafer on either side of the wafer trapping electrodes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
设计的量子设备有望彻底改变沟通,传感和计算,但是如果要对现实世界中的问题有用,这些系统必须通过数量级的大小增加。特别是,被困的原子离子是用于量子信息处理的领先平台。这些离子被困在DC和RF电势中,并用激光控制,并通过光学测量。但是,当前的离子陷阱方法面临可伸缩性和陷阱质量之间的权衡(例如,陷阱潜力的深度和均匀性)。这项探索性研究(急切)量子制造奖的早期概念赠款支持新的离子陷阱体系结构提供电气和光学控制,而无需牺牲生产性。将探索硅制造技术,以创建增加光学访问的电极,多磁力比对和粘结工艺将提高陷阱质量,并且将直接制造焦点光学器件并与捕获电极对齐。这些进步将使陷阱,控制和测量数千个离子在厘米尺度的设备上。这项工作代表了定义被困的离子量子计算机制造过程的第一步。此外,不断发展的量子行业将需要一支训练有素的劳动力来设计,构建和测试这些下一代设备。通过参加研究,学生将接受相关技能的培训并发展量子素养。通过加入华盛顿大学的现有努力来扩大代表性不足的人群的参与。缩小捕获特征和设计可扩展性之间的差距。研究将着重于开发具有同时高陷阱深度,电压效率和光学访问的离子陷阱的可再现制造过程。高级硅制造技术的研究和开发将实现伸出的电极和背面路由。多层晶圆陷阱将提供高质量的诱捕电势,静电模拟将为制造公差提供信息。最后,通过直接在晶圆捕获电极的任一侧的手柄晶片的直接图案构图来设计并在电视上设计和光刻与电极进行设计,并将其平面焦点焦点。该奖项反映了NSF的法定任务,并被认为是通过使用评估值得的支持,可以在晶圆捕获电极的任一侧进行直接构图。基金会的智力优点和更广泛的影响评论标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sara Mouradian其他文献
Sara Mouradian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
多体系统量子态弛豫过程的研究
- 批准号:12374461
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
无经典信道高效连续变量量子密钥分发技术研究
- 批准号:62371060
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
可控掺杂小带隙硫化铅量子点薄膜及同质结光电二极管研究
- 批准号:62304085
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
量子点用于钙钛矿薄膜缺陷管理及太阳电池界面调控
- 批准号:22308112
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
对称性保护的新奇量子态研究
- 批准号:12305033
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
EAGER: Quantum Manufacturing: Supporting Future Quantum Applications by Developing a Robust, Scalable Process to Create Diamond Nitrogen-Vacancy Center Qubits
EAGER:量子制造:通过开发稳健、可扩展的工艺来创建钻石氮空位中心量子位,支持未来的量子应用
- 批准号:
2242049 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Quantum Manufacturing: Monolithic integration of telecommunication-band quantum emitters in the 4H-SiC-on-insulator platform
EAGER:量子制造:电信频段量子发射器在绝缘体上 4H-SiC 平台中的单片集成
- 批准号:
2240420 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Quantum Manufacturing: Scaling Quantum Photonic Circuits with Integrated Superconducting Detectors by 100×
EAGER:量子制造:使用集成超导探测器将量子光子电路扩展 100 倍
- 批准号:
2240501 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Quantum Manufacturing: Vertical Coupling and Cross-Talk Shielding of Superconducting Quantum Devices
合作研究:EAGER:量子制造:超导量子器件的垂直耦合和串扰屏蔽
- 批准号:
2240246 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Quantum Manufacturing: Scalable Manufacturing of Molecular Qubit Arrays Using Self-assembled DNA
EAGER:量子制造:使用自组装 DNA 进行分子量子位阵列的可扩展制造
- 批准号:
2240309 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant