CAREER: Do microbes form caves? Sulfide oxidation and limestone corrosion in sulfuric acid caves

职业:微生物会形成洞穴吗?

基本信息

  • 批准号:
    2239710
  • 负责人:
  • 金额:
    $ 90.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-15 至 2028-05-31
  • 项目状态:
    未结题

项目摘要

Some of the world’s largest and most spectacular limestone caves, including Carlsbad Cavern and Lechuguilla Cave in New Mexico, were created by sulfuric acid. These caves form where groundwaters carrying dissolved hydrogen sulfide are exposed to oxygen, usually at or near the cave water table. Hydrogen sulfide is unstable in the presence of oxygen, and it rapidly reacts to form sulfuric acid and other sulfur compounds that dissolve limestone and precipitate new minerals. And because of the abundant chemical energy from hydrogen sulfide, chemosynthetic microorganisms thrive at the water table and speed up sulfide oxidation, producing what might be the fastest known rates of cave enlargement. This project will use an interdisciplinary combination of microbiology, geochemistry, and modeling to determine where, how, and how fast limestone dissolves in these caves, and how specifically microorganisms contribute to bedrock corrosion. Results from this research will show us how microorganisms form caves, but also how they contribute to similar carbonate weathering processes that occur across other more widespread but less accessible subsurface environments. Carbonate mineral weathering by strong acids is an important source of carbon dioxide to the atmosphere, but sulfuric acid weathering is not well understood in the terrestrial subsurface, especially in areas with limestone and other carbonate bedrock. Sulfuric acid caves are windows through which we can directly access and study these extensive but otherwise hidden processes of subterranean carbonate weathering, gas flux, and mineral formation. And, caves are exceptional platforms for science communication. This project will take advantage of the excitement of caves to create new educational opportunities through course-based research, K-12 teacher education, and science communication activities. In actively-forming sulfuric acid caves, substantial limestone corrosion and void development can occur above the water table, where springs and streams degas hydrogen sulfide to the cave atmosphere. However, the overall impact of this degassing-driven processes is not well understood, and we don’t know the contribution of vadose corrosion for sulfuric acid cave formation, or how microorganisms affect karst development above the water table. This project will therefore combine geochemical and molecular analyses with speleogenetic modeling to address three questions: (1) Do microorganisms speed up sulfide oxidation and limestone dissolution above the water table, and can these rates explain observed cave morphologies? (2) How do microorganisms affect subaerial carbonate dissolution, both during the active phase of sulfuric acid corrosion but also throughout the long lifetime of the caves? (3) What is the impact of gas emissions from sulfuric acid karst for climate and carbon cycling? The team will address these questions by combining direct measurements of limestone dissolution and biological sulfide oxidation kinetics with metatranscriptomics and other community analyses to directly link microbial activity with cave formation both close to and far from the sulfidic aquifer. They will use air flow and speleogenetic modeling to relate these measurements to cave morphologies and gas flux. And they will explore how these processes change in ancient sulfuric acid caves that no longer have a sulfide source. Parts of Questions 2 and 3 will be addressed through course-based research that emphasizes biodiscovery, Earth systems, and science communication. This CAREER award is co-funded by the Geobiology and Low-Temperature Geochemistry Program and the Education and Human Resources Program in the NSF Division of Earth Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
一些世界上最大、最壮观的石灰岩洞穴,包括新墨西哥州的卡尔斯巴德洞穴和莱楚吉拉洞穴,都是由硫酸形成的,这些洞穴是在含有溶解的硫化氢的地下水暴露于氧气的地方形成的,通常位于洞穴地下水位或附近。硫化氢在氧气存在下不稳定,它会迅速反应形成硫酸和其他硫化合物,溶解石灰石并沉淀新的硫化合物。由于硫化氢提供丰富的化学能,化学合成微生物在地下水位大量繁殖,加速硫化物氧化,产生可能是已知最快的洞穴扩张速度。并进行建模以确定石灰石在这些洞穴中溶解的位置、方式和速度,以及微生物如何具体促进基岩腐蚀。这项研究的结果将向我们展示如何进行。微生物形成洞穴,以及它们如何促进其他更广泛但不易到达的地下环境中发生的类似碳酸盐风化过程,强酸造成的碳酸盐矿物风化是大气中二氧化碳的重要来源,但硫酸风化效果并不好。在陆地地下,特别是在有石灰岩和其他碳酸盐基岩的地区,硫酸洞穴是我们可以直接进入和研究这些广泛但隐藏的地下碳酸盐过程的窗口。而且,洞穴是科学传播的特殊平台,该项目将利用洞穴的魅力,通过基于课程的研究、K-12 教师教育和科学传播活动创造新的教育机会。在活跃形成的硫酸洞穴中,地下水位上方可能会发生大量的石灰石腐蚀和空隙发育,其中泉水和溪流将硫化氢释放到洞穴大气中。然而,这种脱气驱动过程的总体影响尚不清楚。我们不知道渗流腐蚀对硫酸洞穴形成的贡献,也不知道微生物如何影响地下水位以上的岩溶发育,因此,该项目将地球化学和分子分析与洞穴成因模型相结合,以解决三个问题:(1)微生物是否存在。加速地下水位以上的硫化物氧化和石灰石溶解,这些速率可以解释观察到的洞穴形态吗?(2)微生物如何影响地下碳酸盐溶解,无论是在硫酸腐蚀的活跃阶段,还是在洞穴的整个生命周期中?(3)硫酸喀斯特的气体排放对气候和碳循环有何影响?该团队将通过结合直接测量来解决这些问题。他们将使用宏转录组学和其他群落分析的石灰石溶解和生物硫化物氧化动力学,将微生物活动与靠近和远离硫化物含水层的洞穴形成直接联系起来。他们将通过气流和洞穴生成模型将这些测量结果与洞穴形态和气体通量联系起来,并且他们将探索不再具有硫化物源的古代硫酸洞穴中的这些过程如何变化。该职业奖由地球生物学和低温地球化学计划以及教育和人力资源计划共同资助。 NSF 地球科学部。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Jones其他文献

Lysophospholipid (LPA) receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database
IUPHAR/BPS 药理学指南数据库中的溶血磷脂 (LPA) 受体(2019.4 版)
  • DOI:
    10.2218/gtopdb/f36/2019.4
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Blaho;J. Chun;A. Frantz;T. Hla;Daniel Jones;Deepa Jonnalagadda;Y. Kihara;H. Mizuno;W. Moolenaar;C. Mpamhanga;S. Spiegel;Valerie Tan;Y. Yung
  • 通讯作者:
    Y. Yung
Surface As Structure: The Multi-Touch Controller As Map Of Musical State Space
表面作为结构:多点触控控制器作为音乐状态空间的地图
  • DOI:
    10.5281/zenodo.850157
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    O. Bown;Daniel Jones;Sam Britton
  • 通讯作者:
    Sam Britton
The phoneme: its nature and use
音素:它的性质和用途
  • DOI:
  • 发表时间:
    1950
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Jones
  • 通讯作者:
    Daniel Jones
Special and structured matrices in max-plus algebra
最大加代数中的特殊和结构化矩阵
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Jones
  • 通讯作者:
    Daniel Jones
Lysophospholipid (S1P) receptors (version 2020.5) in the IUPHAR/BPS Guide to Pharmacology Database
IUPHAR/BPS 药理学指南数据库中的溶血磷脂 (S1P) 受体(版本 2020.5)
  • DOI:
    10.2218/gtopdb/f135/2020.5
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    V. Blaho;J. Chun;Daniel Jones;Deepa Jonnalagadda;Y. Kihara;Valerie Tan
  • 通讯作者:
    Valerie Tan

Daniel Jones的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Jones', 18)}}的其他基金

Conference: Rocky Mountain Geobiology Symposium 2024
会议:2024 年落基山地球生物学研讨会
  • 批准号:
    2417156
  • 财政年份:
    2024
  • 资助金额:
    $ 90.89万
  • 项目类别:
    Standard Grant
The Gulf Stream control of the North Atlantic carbon sink
湾流对北大西洋碳汇的控制
  • 批准号:
    NE/W009579/1
  • 财政年份:
    2023
  • 资助金额:
    $ 90.89万
  • 项目类别:
    Research Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Inoculation vs. education: the role of real time alerts and end-user overconfidence
EAGER:DCL:SaTC:实现跨学科协作:接种与教育:实时警报和最终用户过度自信的作用
  • 批准号:
    2210198
  • 财政年份:
    2022
  • 资助金额:
    $ 90.89万
  • 项目类别:
    Standard Grant
Collaborative Research: RESEARCH-PGR: Comparative genomics of the capitulum: deciphering the molecular basis of a key floral innovation
合作研究:RESEARCH-PGR:头状花序的比较基因组学:破译关键花卉创新的分子基础
  • 批准号:
    2214474
  • 财政年份:
    2022
  • 资助金额:
    $ 90.89万
  • 项目类别:
    Standard Grant
Seabed Mining And Resilience To EXperimental impact
海底采矿和实验影响的恢复能力
  • 批准号:
    NE/T003537/1
  • 财政年份:
    2021
  • 资助金额:
    $ 90.89万
  • 项目类别:
    Research Grant
Autonomous Techniques for anthropogenic Structure Ecological Assessment (AT-SEA)
人为结构生态评估自主技术(AT-SEA)
  • 批准号:
    NE/T010649/1
  • 财政年份:
    2021
  • 资助金额:
    $ 90.89万
  • 项目类别:
    Research Grant
Advaenced state estimats of the ocean and cryosphere: innovative new tools to better understand, predict, and prepare for sea level changes
海洋和冰冻圈的先进状态估计:更好地理解、预测和准备海平面变化的创新工具
  • 批准号:
    MR/T020822/1
  • 财政年份:
    2020
  • 资助金额:
    $ 90.89万
  • 项目类别:
    Fellowship
NSF Postdoctoral Fellowship in Biology FY 2019: Deciphering CLE Peptide Signaling Pathways in Sunflower (Helianthus annuus)
2019 财年 NSF 生物学博士后奖学金:破译向日葵(Helianthus annuus)中的 CLE 肽信号通路
  • 批准号:
    1906389
  • 财政年份:
    2019
  • 资助金额:
    $ 90.89万
  • 项目类别:
    Fellowship Award
EVIST/HST Individual Awards
EVIST/HST 个人奖
  • 批准号:
    8516282
  • 财政年份:
    1985
  • 资助金额:
    $ 90.89万
  • 项目类别:
    Interagency Agreement
American Chemists and the Geneva Protocol
美国化学家和日内瓦议定书
  • 批准号:
    7614312
  • 财政年份:
    1976
  • 资助金额:
    $ 90.89万
  • 项目类别:
    Standard Grant

相似国自然基金

信用债市场做市商管理和摩擦识别:基于拓展的搜寻匹配模型分析
  • 批准号:
    72303125
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于达文波特星形酵母Do18强化发酵的糟带鱼生物胺生物调控机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于PO-DGT原理的沉积物微界面pH-DO-磷-重金属的精细化同步成像技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
斜交斜做正交异性波纹钢拱壳的翘曲与畸变效应及整体稳定性分析
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
期权高阶矩风险溢价模型:基于做市商期权定价风险的理论建模与实证分析
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

How do soluble enzymes from microbes degrade insoluble plant cell walls?
微生物的可溶性酶如何降解不溶性植物细胞壁?
  • 批准号:
    2888684
  • 财政年份:
    2023
  • 资助金额:
    $ 90.89万
  • 项目类别:
    Studentship
Managing the competition: How do burying beetles and microbes sustainably coexist in competition over shared resources?
管理竞争:埋藏甲虫和微生物如何在共享资源的竞争中可持续共存?
  • 批准号:
    NE/V012053/1
  • 财政年份:
    2022
  • 资助金额:
    $ 90.89万
  • 项目类别:
    Research Grant
Do mass flowering crops and eusocial bees contribute to the spread of pathogens among bees?
大量开花作物和社会性蜜蜂是否会导致病原体在蜜蜂中传播?
  • 批准号:
    21K14868
  • 财政年份:
    2021
  • 资助金额:
    $ 90.89万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
How do infant gut microbes use N-glycans from breast milk as a nutrient source?
婴儿肠道微生物如何利用母乳中的 N-聚糖作为营养源?
  • 批准号:
    2594480
  • 财政年份:
    2021
  • 资助金额:
    $ 90.89万
  • 项目类别:
    Studentship
水俣湾及び埋立地の環境変動時における底質の化学変化に伴う再水銀汚染に関する検討
水俣湾和填海区环境变化过程中底层沉积物化学变化引起的再汞污染研究
  • 批准号:
    21K05162
  • 财政年份:
    2021
  • 资助金额:
    $ 90.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了