CAREER: CAS: A Building Block Approach to Study Charge Transport: From Single-Molecule to Bulk
职业:CAS:研究电荷传输的构建方法:从单分子到整体
基本信息
- 批准号:2239614
- 负责人:
- 金额:$ 66.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With this CAREER project, supported by the Chemical Structure, Dynamics & Mechanisms B Program of the Chemistry Division, Michael Inkpen of the Department of Chemistry at the University of Southern California (USC) seeks to develop integrated methods that explore how electrical charges move through materials across different length scales (from single-molecule to bulk). The proposed approach draws inspiration from the chemical building blocks and linkages used to build conducting and permanently porous ordered polymers (OPs). The key goals of this project are to provide a deeper fundamental understanding of how the atomic details of these molecular structures influence their electronic function(s), and to evaluate possible correlations between charge transport through chemically comparable single-molecule and bulk materials. This research ultimately aims to expose new design principles for molecular-scale devices, such as wires and switches, that approach the limit of miniaturization for electronic circuits used in computation and data storage. The goal is to identify the most promising molecular building blocks for constructing functional OPs with potential applications in energy storage, energy conversion, or sensing. Concurrently, Dr. Inkpen and his research team will leverage development of a new academic search database to engage underrepresented 1st and 2nd year undergraduate students, by improving the teaching of molecular nanoscience at USC and beyond, and by implementing a virtual, asynchronous summer workshop to reach students who cannot easily attend in person outreach activities.The fields of molecular electronics and conducting ordered polymers (OPs) each are directed at the understanding and manipulation of charge transport through molecularly well-defined systems, yet efforts in these research domains are rarely coordinated. Bridging these research areas, this proposal aims to explore fundamental structure-electronic property relationships across different length scales by studying model single-molecule, extended oligomeric, and bulk materials using a combination of scanning tunneling microscope-based break junction (STM-BJ), conducting-probe atomic force microscopy (CP-AFM), and 4-point probe methods. Quantum interference (QI), d-π conjugation, and redox effects will be probed in new families of molecular devices inspired by the multi-topic and metal-containing structures used in two-dimensional and three-dimensional OPs. Possible trends between single molecule conductance and band transport in structurally analogous bulk materials will be evaluated as a means to select specific building blocks for the construction of extended ordered systems with targeted electronic properties. New synthetic strategies will be developed that target the construction of compositionally distinct OPs with comparable crystallinity and defect concentrations. Studies of such model extended materials, on surfaces and in bulk, have the potential to improve structure-property comparisons and to allow practitioners to build new nanoscale-to-bulk transport property correlations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在这个职业项目的支持下,在南加州大学化学部的化学结构,动力学和机制B计划B计划的支持下,南加州大学(USC)的迈克尔·英彭(Michael Inkpen)试图开发综合方法,以探索电荷如何在不同长度尺度上通过材料(从单分子到散装)进行材料。所提出的方法从化学构建块和用于建立指导和永久订购聚合物(OPS)的连接中汲取灵感。该项目的主要目标是对这些分子结构的原子细节如何影响其电子功能,并评估通过化学上可比的单物分子和大量材料之间的可能相关性,提供更深入的理解。这项研究最终旨在揭露分子规模设备(例如电线和开关)的新设计原理,以接近计算和数据存储中使用的电子电路的微型化极限。目的是确定最有希望的分子构建块,用于在能量存储,能量转换或灵敏度中使用潜在应用来构建功能OP。同时,Inkpen博士和他的研究团队将通过改善USC及其他地区的分子纳米科学教学,并通过改善虚拟的,异常的夏季夏季派遣者,以在井期的阶段和人访问中,通过改善分子范围的学生(不轻松地参加人物的分子)(分子),通过改善分子纳米科学的教学,从而使新的学术搜索数据库的开发与代表性不足的一年级和第二年的本科生相关。专门针对通过分子定义明确的系统理解和操纵电荷传输,但是在这些研究领域中的努力很少得到协调。桥接这些研究领域,该建议旨在通过研究基于扫描隧道显微镜显微镜的Brakintion(STM-BJ)的组合,通过研究模型的单分子,扩展的寡聚和大量材料来探索不同长度范围内的基本结构 - 电子性质关系(STM-BJ),导电性原子力原子力学显微镜(CP-Fafm)和4点。量子干扰(QI),D-π结合和氧化还原效应将在新的分子设备家族中探测,灵感来自于二维和三维OPS中使用的多主题和金属含量结构。单分子电导与结构类似体积材料中的带传输之间的可能趋势将作为选择特定的构建块,以构建具有靶向电子性能的扩展有序系统。将开发出新的合成策略,以构建具有可比的结晶度和缺陷浓度的构图不同的OP。对这种模型扩展材料的研究,在表面和批量上,有可能改善结构特质的比较,并允许从业人员建立新的纳米级传输交通运输物业相关性。这项奖项反映了NSF的法定任务,并通过使用该基金会的知识分子和更广泛的影响来评估Criteria criteria criteria criteria criteria criteria被视为珍贵的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
相似国自然基金
III-E型CRISPR-Cas系统的结构生物学及其应用研究
- 批准号:32371276
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
兼容等温扩增的双CRISPR/Cas12方法体系构建及其多重精准监测肉及肉制品食用安全的应用研究
- 批准号:82373629
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
基于内源CRISPR/Cas与模块化报告系统的多杀菌素调控机制与高产策略研究
- 批准号:32370064
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于CRISPR/Cas9文库筛选的STK19增强舌鳞癌顺铂敏感性的机制研究
- 批准号:82360568
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
利用细胞内RNA结构信息结合深度学习算法设计高效细胞环境特异的CRISPR-Cas13d gRNA
- 批准号:32300521
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: CAS-Climate -- A modeling framework to understand the environmental and equity impacts of building decarbonization retrofits
职业:CAS-Climate——了解建筑脱碳改造对环境和公平影响的建模框架
- 批准号:23393862339386
- 财政年份:2024
- 资助金额:$ 66.86万$ 66.86万
- 项目类别:Continuing GrantContinuing Grant
CAS: Degradable Polyacrylates From Natural and Scalable Building Blocks
CAS:来自天然和可扩展构件的可降解聚丙烯酸酯
- 批准号:23486792348679
- 财政年份:2024
- 资助金额:$ 66.86万$ 66.86万
- 项目类别:Standard GrantStandard Grant
Nucleic Acid-Based Anti-CRISPR Inhibitors of Cas9
基于核酸的 Cas9 抗 CRISPR 抑制剂
- 批准号:1086441210864412
- 财政年份:2023
- 资助金额:$ 66.86万$ 66.86万
- 项目类别:
Development of novel fetal hemoglobin inducers using targeted protein degradation
利用靶向蛋白质降解开发新型胎儿血红蛋白诱导剂
- 批准号:1060562010605620
- 财政年份:2023
- 资助金额:$ 66.86万$ 66.86万
- 项目类别:
Structural and Functional Studies of lncRNAs in Gene Activation
lncRNA 在基因激活中的结构和功能研究
- 批准号:1063740710637407
- 财政年份:2023
- 资助金额:$ 66.86万$ 66.86万
- 项目类别: