CAREER: CAS: A Building Block Approach to Study Charge Transport: From Single-Molecule to Bulk

职业:CAS:研究电荷传输的构建方法:从单分子到整体

基本信息

  • 批准号:
    2239614
  • 负责人:
  • 金额:
    $ 66.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

With this CAREER project, supported by the Chemical Structure, Dynamics & Mechanisms B Program of the Chemistry Division, Michael Inkpen of the Department of Chemistry at the University of Southern California (USC) seeks to develop integrated methods that explore how electrical charges move through materials across different length scales (from single-molecule to bulk). The proposed approach draws inspiration from the chemical building blocks and linkages used to build conducting and permanently porous ordered polymers (OPs). The key goals of this project are to provide a deeper fundamental understanding of how the atomic details of these molecular structures influence their electronic function(s), and to evaluate possible correlations between charge transport through chemically comparable single-molecule and bulk materials. This research ultimately aims to expose new design principles for molecular-scale devices, such as wires and switches, that approach the limit of miniaturization for electronic circuits used in computation and data storage. The goal is to identify the most promising molecular building blocks for constructing functional OPs with potential applications in energy storage, energy conversion, or sensing. Concurrently, Dr. Inkpen and his research team will leverage development of a new academic search database to engage underrepresented 1st and 2nd year undergraduate students, by improving the teaching of molecular nanoscience at USC and beyond, and by implementing a virtual, asynchronous summer workshop to reach students who cannot easily attend in person outreach activities.The fields of molecular electronics and conducting ordered polymers (OPs) each are directed at the understanding and manipulation of charge transport through molecularly well-defined systems, yet efforts in these research domains are rarely coordinated. Bridging these research areas, this proposal aims to explore fundamental structure-electronic property relationships across different length scales by studying model single-molecule, extended oligomeric, and bulk materials using a combination of scanning tunneling microscope-based break junction (STM-BJ), conducting-probe atomic force microscopy (CP-AFM), and 4-point probe methods. Quantum interference (QI), d-π conjugation, and redox effects will be probed in new families of molecular devices inspired by the multi-topic and metal-containing structures used in two-dimensional and three-dimensional OPs. Possible trends between single molecule conductance and band transport in structurally analogous bulk materials will be evaluated as a means to select specific building blocks for the construction of extended ordered systems with targeted electronic properties. New synthetic strategies will be developed that target the construction of compositionally distinct OPs with comparable crystallinity and defect concentrations. Studies of such model extended materials, on surfaces and in bulk, have the potential to improve structure-property comparisons and to allow practitioners to build new nanoscale-to-bulk transport property correlations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在这个职业项目中,南加州大学 (USC) 化学系的 Michael Inkpen 得到了化学系化学结构、动力学和机制 B 项目的支持,致力于开发综合方法来探索电荷如何在材料中移动所提出的方法从用于构建导电和永久多孔有序聚合物(OP)的化学构件和连接中汲取了灵感。更深入地了解这些分子结构的原子细节如何影响其电子功能,并通过化学上可比的单分子和块体材料评估电荷传输之间可能的相关性。这项研究的最终目的是揭示分子的新设计原理。规模设备,如电线和开关,接近计算和数据存储中使用的电子电路的小型化极限,目标是确定最有前途的分子构建块,用于构建在能量存储、能量转换、或同时感测。 Inkpen 博士和他的研究团队将利用新的学术搜索数据库的开发来吸引代表性不足的一年级和二年级本科生,改善南加州大学及其他地区的分子纳米科学教学,并通过实施虚拟、异步夏季研讨会来吸引学生分子电子学和导电有序聚合物(OP)领域各自致力于通过分子明确的系统来理解和操纵电荷传输,但这些研究领域的努力很少协调一致。在这些研究领域,该提案旨在通过结合基于扫描隧道显微镜的断裂结(STM-BJ)研究模型单分子、扩展低聚物和块体材料,探索不同长度尺度上的基本结构-电子特性关系, -探针原子力显微镜 (CP-AFM) 和 4 点探针方法 (QI)、d-π 共轭和氧化还原效应将在受二维和三维OP中使用的多主题和含金属结构将被评估,作为选择用于构建扩展有序结构的特定构建块的一种手段。将开发具有目标电子特性的新合成策略,目标是构建具有晶体可比性和缺陷浓度的成分不同的OP,对此类模型扩展材料的表面和本体研究有可能改善结构特性。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Inkpen其他文献

Michael Inkpen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于表面等离激元纳腔/CRISPR-Cas12a异质结荧光增强效应的生物传感研究
  • 批准号:
    62305229
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
应用CRISPR/Cas13a基因编辑系统针对BRAFV600E阳性黑色素瘤脑转移瘤精准诊疗技术的研究
  • 批准号:
    82303971
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
AcrIIA16-19蛋白抑制CRISPR-Cas9系统的机制研究
  • 批准号:
    32300036
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
正二十面体框架核酸高效递送CRISPR-Cas13a靶向阻断高毒力金葡菌α溶血素表达
  • 批准号:
    82302594
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于CRISPR/Cas9筛选肝癌进展中关键可变剪切因子及促癌机制研究
  • 批准号:
    82303469
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: CAS-Climate -- A modeling framework to understand the environmental and equity impacts of building decarbonization retrofits
职业:CAS-Climate——了解建筑脱碳改造对环境和公平影响的建模框架
  • 批准号:
    2339386
  • 财政年份:
    2024
  • 资助金额:
    $ 66.86万
  • 项目类别:
    Continuing Grant
CAS: Degradable Polyacrylates From Natural and Scalable Building Blocks
CAS:来自天然和可扩展构件的可降解聚丙烯酸酯
  • 批准号:
    2348679
  • 财政年份:
    2024
  • 资助金额:
    $ 66.86万
  • 项目类别:
    Standard Grant
Nucleic Acid-Based Anti-CRISPR Inhibitors of Cas9
基于核酸的 Cas9 抗 CRISPR 抑制剂
  • 批准号:
    10864412
  • 财政年份:
    2023
  • 资助金额:
    $ 66.86万
  • 项目类别:
Development of novel fetal hemoglobin inducers using targeted protein degradation
利用靶向蛋白质降解开发新型胎儿血红蛋白诱导剂
  • 批准号:
    10605620
  • 财政年份:
    2023
  • 资助金额:
    $ 66.86万
  • 项目类别:
Structural and Functional Studies of lncRNAs in Gene Activation
lncRNA 在基因激活中的结构和功能研究
  • 批准号:
    10637407
  • 财政年份:
    2023
  • 资助金额:
    $ 66.86万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了