CAREER: Atomic-Scale Origins of Fast Ion Conduction through Complex Solid-State Electrochemical Interfaces

职业:通过复杂固态电化学界面快速离子传导的原子尺度起源

基本信息

  • 批准号:
    2239598
  • 负责人:
  • 金额:
    $ 66.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-03-01 至 2028-02-29
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL DESCRIPTION: Ceramic materials are essential for clean energy technologies. Specifically, the next-generation solid-state batteries using ceramics as a medium to conduct ions between positive and negative electrodes can improve the safety and energy density over today’s conventional liquid-based lithium-ion battery technology. However, the ability of ion transport in ceramics is not high enough to make batteries charge faster for use in electric vehicles and high-power applications. To solve this critical issue, this project aims to study how the material’s structures and interfaces affect the ion conduction under complex electrochemical conditions. Advanced electron microscopy techniques are used to visualize these fundamental processes on the nanometer scale. This is important because the obtained scientific knowledge can be used as design rules to guide the development of viable energy storage technologies, enhancing the energy security and sustainability. This project provides training on microscopy and analytical tools for diverse students at all levels and promotes broader participation of women and underrepresented minorities in the workforce development. The education and outreach program designed “for understanding nanotechnology and materials experience (FunMe)” offers summer research interns and extracurricular activities for undergraduate and K-12 students by leveraging the minority-serving programs partnered with local and nationwide initiatives.TECHNICAL DETAILS: Solid-state electrolytes with high ionic conductivity and interfacial stability are vital and urgently needed to enable safe and high-performance all-solid-state batteries for the next generation energy storage technology. This CAREER project aims to fundamentally understand the atomic-scale origin of fast lithium-ion conduction through complex electrochemical interfaces of ceramic solid-state electrolytes. Specifically, the effects of grain boundary microstructure, compositional heterogeneity, and space charge induced electrostatic potential on the ionic conductivity as well as the correlated electro-chemo-mechanical interface degradation mechanism will be elucidated using in situ transmission electron microscopy integrated with operando electrochemical impedance spectroscopy under air-free environments. The gained new knowledge will provide design principles for microstructural optimization and interfacial engineering to improve the cell performance and stability. This research will have multifaceted impacts on the advancements of fundamental theories, microscopy methodologies, and technically viable all-solid-state batteries for energy-intensive applications. The integrated education and outreach program offers a unique microscopy-centric STEM pipeline to engage graduate, undergraduate, and K-12 students, enhance broader participation of women and underrepresented minorities, and support their career development and work readiness through interrelated teaching, mentoring, training, and outreach activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:陶瓷材料对于清洁能源技术至关重要。具体来说,使用陶瓷作为正负极之间传导离子的介质的下一代固态电池可以比当今传统的液基电池提高安全性和能量密度。然而,陶瓷中的离子传输能力不足以使电池在电动汽车和高功率应用中充电更快。为了解决这一关键问题,该项目旨在研究如何实现锂离子电池技术。材料的结构和界面影响复杂电化学条件下的离子传导,先进的电子显微镜技术用于在纳米尺度上可视化这些基本过程,这很重要,因为获得的科学知识可以用作设计规则来指导可行的能量的开发。该项目为各级不同学生提供显微镜和分析工具培训,并促进妇女和代表性不足的少数群体更广泛地参与劳动力发展。材料体验(FunMe)”利用与当地和全国性计划合作的少数族裔服务项目,为本科生和 K-12 学生提供暑期研究实习生和课外活动。技术细节:具有高离子电导率和界面稳定性的固态电解质至关重要迫切需要为下一代储能技术提供安全、高性能的全固态电池。该职业项目旨在从根本上了解快速反应的原子尺度起源。锂离子通过陶瓷固态电解质复杂电化学界面的传导具体来说,晶界微观结构、成分异质性和空间电荷诱导静电势对离子电导率的影响以及相关的电化学机械界面退化机制。将在无空气环境下使用原位透射电子显微镜与操作电化学阻抗谱相结合来阐明这一点,所获得的新知识将为微观结构优化和界面提供设计原理。这项研究将对能源密集型应用的基础理论、显微镜方法和技术上可行的全固态电池的进步产生多方面的影响。以 STEM 为中心的渠道,吸引研究生、本科生和 K-12 学生,提高女性和代表性不足的少数族裔的更广泛参与,并通过相互关联的教学、指导、培训和外展活动支持他们的职业发展和工作准备。该奖项通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reliable Microscopy and Microanalysis Strategies for Real-World Batteries
适用于实际电池的可靠显微镜和微量分析策略
  • DOI:
    10.1093/micmic/ozad067.049
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    He, Kai
  • 通讯作者:
    He, Kai
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kai He其他文献

Efficient NC process scheme generation method based on reusable macro and micro process fusion
基于可复用宏微观工艺融合的高效数控工艺方案生成方法
Experimental Study on the Improvement of Yaw Stability by Coordination Control between the Caudal Fin and Anal Fin
尾鳍与臀鳍协调控制提高偏航稳定性的实验研究
  • DOI:
    10.1007/s42235-022-00201-4
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Jiang Ding;Changzhen Zheng;Chaocheng Song;Qiyang Zuo;Yaohui Xu;Bingbing Dong;Jiaxu Cui;Kai He;Xie Fengran
  • 通讯作者:
    Xie Fengran
Effect of carbon nanotube hybrid on the microstructure and properties of AlN skeleton-reinforced highly oriented graphite flake composites
碳纳米管杂化对AlN骨架增强高取向鳞片石墨复合材料微观结构和性能的影响
  • DOI:
    10.1016/j.ceramint.2021.10.220
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Xiaoyu Zhang;Yuanyuan Zhu;Wenqi Xie;Haoran Pang;Delong He;Kai He;Jinbo Bai;Zhongqi Shi
  • 通讯作者:
    Zhongqi Shi
Ni-W Catalysts Supported on Mesoporous SBA-15: Trace W Steering CO2 Methanation
介孔 SBA-15 支持的 Ni-W 催化剂:痕量 W 引导 CO2 甲烷化
  • DOI:
    10.1007/s40242-022-2096-8
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Kai He;Shijia Liu;Guiyan Zhao;Yucai Qin;Yanfeng Bi;Lijuan Song
  • 通讯作者:
    Lijuan Song
A method of denoising remote sensing signal from natural background based on wavelet and Shannon entropy
基于小波和香农熵的自然背景遥感信号去噪方法
  • DOI:
    10.1117/12.673670
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kai He;Lei Yan;Jingjing Liu
  • 通讯作者:
    Jingjing Liu

Kai He的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kai He', 18)}}的其他基金

RII Track-4: Exploring Ferromagnetism in Two-Dimensional Van Der Waals Materials
RII Track-4:探索二维范德华材料中的铁磁性
  • 批准号:
    1929138
  • 财政年份:
    2019
  • 资助金额:
    $ 66.7万
  • 项目类别:
    Standard Grant

相似国自然基金

面向多源和大规模数据集的多元合金原子移动性参数数据库的自动化建立方法及其应用
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模单原子集成
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    80 万元
  • 项目类别:
    重大研究计划
氮掺杂碳负载过渡金属单原子催化剂的规模化制备及其高性能电还原CO2
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于兰州强流重离子加速器装置的丰中子重核及超重核结构的研究
  • 批准号:
    U1832139
  • 批准年份:
    2018
  • 资助金额:
    54.0 万元
  • 项目类别:
    联合基金项目
天然无规蛋白的氨基酸环境特异性分子力场研究
  • 批准号:
    31770771
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Atomic scale understanding of the doping incorporation and transport properties in ultrawide band gap semiconductors
职业:从原子尺度理解超宽带隙半导体的掺杂掺入和输运特性
  • 批准号:
    2145091
  • 财政年份:
    2022
  • 资助金额:
    $ 66.7万
  • 项目类别:
    Continuing Grant
CAREER: Design and Understanding up from the Atomic Scale of Multivalent Intercalation Electrodes for High-Energy-Density Rechargeable Batteries
职业:从原子尺度设计和理解高能量密度可充电电池的多价插层电极
  • 批准号:
    1847552
  • 财政年份:
    2019
  • 资助金额:
    $ 66.7万
  • 项目类别:
    Standard Grant
CAREER: Atomic Scale Design of van der Waals Heterostructure Nanoribbons
职业:范德华异质结构纳米带的原子尺度设计
  • 批准号:
    1453924
  • 财政年份:
    2015
  • 资助金额:
    $ 66.7万
  • 项目类别:
    Continuing Grant
CAREER: Atomic-Scale Visualization of Excitonic States in Individual Carbon Nanotubes
职业:单个碳纳米管中激子态的原子尺度可视化
  • 批准号:
    1454036
  • 财政年份:
    2015
  • 资助金额:
    $ 66.7万
  • 项目类别:
    Continuing Grant
CAREER: Atomic Scale Defect Engineering in Graphene Membranes
职业:石墨烯膜的原子尺度缺陷工程
  • 批准号:
    1464616
  • 财政年份:
    2014
  • 资助金额:
    $ 66.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了