CAREER: Atomic-Scale Origins of Fast Ion Conduction through Complex Solid-State Electrochemical Interfaces

职业:通过复杂固态电化学界面快速离子传导的原子尺度起源

基本信息

  • 批准号:
    2239598
  • 负责人:
  • 金额:
    $ 66.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-03-01 至 2028-02-29
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL DESCRIPTION: Ceramic materials are essential for clean energy technologies. Specifically, the next-generation solid-state batteries using ceramics as a medium to conduct ions between positive and negative electrodes can improve the safety and energy density over today’s conventional liquid-based lithium-ion battery technology. However, the ability of ion transport in ceramics is not high enough to make batteries charge faster for use in electric vehicles and high-power applications. To solve this critical issue, this project aims to study how the material’s structures and interfaces affect the ion conduction under complex electrochemical conditions. Advanced electron microscopy techniques are used to visualize these fundamental processes on the nanometer scale. This is important because the obtained scientific knowledge can be used as design rules to guide the development of viable energy storage technologies, enhancing the energy security and sustainability. This project provides training on microscopy and analytical tools for diverse students at all levels and promotes broader participation of women and underrepresented minorities in the workforce development. The education and outreach program designed “for understanding nanotechnology and materials experience (FunMe)” offers summer research interns and extracurricular activities for undergraduate and K-12 students by leveraging the minority-serving programs partnered with local and nationwide initiatives.TECHNICAL DETAILS: Solid-state electrolytes with high ionic conductivity and interfacial stability are vital and urgently needed to enable safe and high-performance all-solid-state batteries for the next generation energy storage technology. This CAREER project aims to fundamentally understand the atomic-scale origin of fast lithium-ion conduction through complex electrochemical interfaces of ceramic solid-state electrolytes. Specifically, the effects of grain boundary microstructure, compositional heterogeneity, and space charge induced electrostatic potential on the ionic conductivity as well as the correlated electro-chemo-mechanical interface degradation mechanism will be elucidated using in situ transmission electron microscopy integrated with operando electrochemical impedance spectroscopy under air-free environments. The gained new knowledge will provide design principles for microstructural optimization and interfacial engineering to improve the cell performance and stability. This research will have multifaceted impacts on the advancements of fundamental theories, microscopy methodologies, and technically viable all-solid-state batteries for energy-intensive applications. The integrated education and outreach program offers a unique microscopy-centric STEM pipeline to engage graduate, undergraduate, and K-12 students, enhance broader participation of women and underrepresented minorities, and support their career development and work readiness through interrelated teaching, mentoring, training, and outreach activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:陶瓷材料对于清洁能源技术至关重要。具体而言,使用陶瓷作为介质进行离子的下一代固态电池可以提高当今常规液体基锂离子电池技术的安全性和能量密度。但是,陶瓷中的离子传输的能力不足以使电池充电速度更快用于电动汽车和高功率应用。为了解决这个关键问题,该项目旨在研究材料的结构和界面如何在复杂的电化学条件下影响离子传导。先进的电子显微镜技术用于在纳米尺度上可视化这些基本过程。这很重要,因为获得的科学知识可以用作设计规则,以指导可行的能源存储技术的开发,增强能源安全和可持续性。该项目为各个级别的潜水员学生提供了有关显微镜和分析工具的培训,并促进了妇女和代表性不足的少数民族在劳动力发展中的广泛参与。教育和宣传计划“用于了解纳米技术和材料经验(FUNME)”,通过利用与本地和全国性计划合作的少数族裔服务计划,为本科和K-12学生提供夏季研究实习生和课外活动。下一代储能技术的全稳态电池。这个职业项目旨在通过复杂的陶瓷固态电解质的复杂电化学接口来从根本上了解快速锂离子传导的原子尺度起源。具体而言,晶粒边界微观结构,复合异质性和空间电荷诱导的静电电位对离子电导率以及相应的电化学界面降解机制的影响,将使用现场电子显微镜与经营电化学的电化学障碍环境集成。获得的新知识将为微观结构优化和界面工程提供设计原理,以改善细胞性能和稳定性。这项研究将对基本理论,显微镜方法和技术可行的全稳态电池的进步产生多方面的影响。整合的教育和外展计划提供了独特的以显微镜为中心的STEM管道,以吸引研究生,本科生和K-12学生,增强妇女和代表性不足的少数群体的更广泛的参与,并通过相互关联的教学,心理,培训,培训和外展活动来支持其职业发展和工作准备。 标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reliable Microscopy and Microanalysis Strategies for Real-World Batteries
适用于实际电池的可靠显微镜和微量分析策略
  • DOI:
    10.1093/micmic/ozad067.049
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    He, Kai
  • 通讯作者:
    He, Kai
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kai He其他文献

Effect of carbon nanotube hybrid on the microstructure and properties of AlN skeleton-reinforced highly oriented graphite flake composites
碳纳米管杂化对AlN骨架增强高取向鳞片石墨复合材料微观结构和性能的影响
  • DOI:
    10.1016/j.ceramint.2021.10.220
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Xiaoyu Zhang;Yuanyuan Zhu;Wenqi Xie;Haoran Pang;Delong He;Kai He;Jinbo Bai;Zhongqi Shi
  • 通讯作者:
    Zhongqi Shi
Iterative algorithm for the conformal mapping function from the exterior of a roadway to the interior of a unit circle
道路外部到单位圆内部等形映射函数的迭代算法
  • DOI:
    10.1007/s00419-021-02087-w
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Kai He;Jucai Chang;Dongdong Pang;Bingjun Sun;Zhiqiang Yin;Dong Li
  • 通讯作者:
    Dong Li
Effects of the chlorination on organic matter removal and microbial communities during soil aquifer treatment for wastewater reclamation
废水回用土壤含水层处理过程中氯化对有机物去除和微生物群落的影响
  • DOI:
    10.1080/09593330.2022.2089599
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kai He;Wataru Shono;Zejun Liu;Yasuhiro Asada;Shinya Echigo;Tomohiro Nakanishi;Sadahiko Itoh
  • 通讯作者:
    Sadahiko Itoh
Efficient Fine-Grained Data Sharing Mechanism
高效细粒度的数据共享机制
A method of denoising remote sensing signal from natural background based on wavelet and Shannon entropy
基于小波和香农熵的自然背景遥感信号去噪方法
  • DOI:
    10.1117/12.673670
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kai He;Lei Yan;Jingjing Liu
  • 通讯作者:
    Jingjing Liu

Kai He的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kai He', 18)}}的其他基金

RII Track-4: Exploring Ferromagnetism in Two-Dimensional Van Der Waals Materials
RII Track-4:探索二维范德华材料中的铁磁性
  • 批准号:
    1929138
  • 财政年份:
    2019
  • 资助金额:
    $ 66.7万
  • 项目类别:
    Standard Grant

相似国自然基金

面向多源和大规模数据集的多元合金原子移动性参数数据库的自动化建立方法及其应用
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模单原子集成
  • 批准号:
    92065103
  • 批准年份:
    2020
  • 资助金额:
    80.0 万元
  • 项目类别:
    重大研究计划
氮掺杂碳负载过渡金属单原子催化剂的规模化制备及其高性能电还原CO2
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于兰州强流重离子加速器装置的丰中子重核及超重核结构的研究
  • 批准号:
    U1832139
  • 批准年份:
    2018
  • 资助金额:
    54.0 万元
  • 项目类别:
    联合基金项目
天然无规蛋白的氨基酸环境特异性分子力场研究
  • 批准号:
    31770771
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Atomic scale understanding of the doping incorporation and transport properties in ultrawide band gap semiconductors
职业:从原子尺度理解超宽带隙半导体的掺杂掺入和输运特性
  • 批准号:
    2145091
  • 财政年份:
    2022
  • 资助金额:
    $ 66.7万
  • 项目类别:
    Continuing Grant
CAREER: Design and Understanding up from the Atomic Scale of Multivalent Intercalation Electrodes for High-Energy-Density Rechargeable Batteries
职业:从原子尺度设计和理解高能量密度可充电电池的多价插层电极
  • 批准号:
    1847552
  • 财政年份:
    2019
  • 资助金额:
    $ 66.7万
  • 项目类别:
    Standard Grant
CAREER: Atomic Scale Design of van der Waals Heterostructure Nanoribbons
职业:范德华异质结构纳米带的原子尺度设计
  • 批准号:
    1453924
  • 财政年份:
    2015
  • 资助金额:
    $ 66.7万
  • 项目类别:
    Continuing Grant
CAREER: Atomic-Scale Visualization of Excitonic States in Individual Carbon Nanotubes
职业:单个碳纳米管中激子态的原子尺度可视化
  • 批准号:
    1454036
  • 财政年份:
    2015
  • 资助金额:
    $ 66.7万
  • 项目类别:
    Continuing Grant
CAREER: Atomic Scale Defect Engineering in Graphene Membranes
职业:石墨烯膜的原子尺度缺陷工程
  • 批准号:
    1464616
  • 财政年份:
    2014
  • 资助金额:
    $ 66.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了