CAREER: Design and modeling for modular bionanotechnology and citizen science
职业:模块化生物纳米技术和公民科学的设计和建模
基本信息
- 批准号:2239518
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2028-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYBionanotechnology is a field that uses designed molecules to construct devices and structures at nanoscale level, with promising applications for the development of novel materials, detection devices, as well as platforms for therapeutics or diagnostics. However, construction of such devices presents significant technical challenges. Computer modeling can provide useful insights into the design mechanisms of such systems. Computer-aided design software is often used in our macroscale world to design e.g. computer chips, cars, planes, etc. so that the device operation can be tested and optimized in simulation first. Construction at the nanoscale however presents multiple challenges. As opposed to our macroworld, nanostructures are typically realized by self-assembly, where individual components randomly diffuse until they meet and assemble into a target structure. To realize more complex structures that would self-assemble in high yields, there is a need for a new simulation framework that can efficiently and, at the same time, accurately represent the assembly and function of such nanostructures. This project will develop a new modeling framework that is capable of simulating self-assembled DNA nanostructures, which currently represent one of the most advanced branches of bionanotechnology. The research team will use this framework to optimize nanostructure assembly for high yield, and computationally design new types of reconfigurable nanostructures. Next, the team will extend the modeling platform to allow for the incorporation of other organic/inorganic molecules and materials, and use it to design a nanoswimmer that can move preferentially in one direction. Overall, this project will facilitate the creation of new nanodevices capable of performing complex tasks that would be difficult to realize experimentally without a sophisticated modeling platform, and bring the field closer to large-scale industrial applications. For the education component of the project, the research team will develop new learning opportunities for university students and the general public. The main effort will involve developing an online citizen science platform, where users can use the simulation platform to design and optimize structures themselves, allowing to crowd-source nanotechnology designs. TECHNICAL SUMMARY:Nucleic acid nanotechnology is one of the most advanced branches of bionanotechnology, with promising applications ranging from biotemplated manufacturing to diagnostics and therapeutics. However, the system sizes (thousands of nucleotides) and the timescales associated with their assembly and function (minutes to hours) make their assembly kinetics very challenging to model. There is hence a pressing need in the field for computational modeling tools that can incorporate additional molecules and materials into the DNA or RNA nanostructures, simulate far-from-equilibrium processes such as ATP-powered motors, and capture nanostructures’ assembly and function over long experimental timescales. To address this challenge, this project will develop a new family of coarse-grained models that can simulate large scale nanosystems, use them to study DNA and RNA nanostructure assembly kinetics, and optimize their designs to improve yields. The PI will use this framework to design new types of DNA and RNA nanostructures with controlled folding pathways that specifically select one possible stable conformation of the molecule, thus creating a reconfigurable biomaterial. Next, the research team will use the modeling platform to design an ATP-powered nanoswimmer that is capable of directional motion.The general framework developed in this project will allow modular design and harness different materials (both organic and inorganic) and functional molecular complexes for nanotechnology construction, thus bringing the field of nanotechnology closer to industry-scale applications and incorporating theoretical modeling into the bionanotechnology design pipeline.The PI’s education program will focus on training undergraduate and graduate students in interdisciplinary research skills required to tackle problems in bionanotechnology harnessing approaches from diverse fields and creating practical hands-on research opportunities as part of the teaching program. Furthermore, this project will develop a citizen science online platform. The platform will use a game-like interface where the players will solve real scientific problems of designing functional DNA nanostructures that will be tested using the developed computer models. It will enable crowd-sourcing the design of nanostructures and hence provide a platform to engage the general public in nanotechnology research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要生物纳米技术是一个使用设计的分子构建纳米级设备和结构的领域,在开发新型材料、检测设备以及治疗或诊断平台方面具有广阔的应用前景。然而,此类设备的构建面临着重大的技术挑战。计算机建模可以为此类系统的设计机制提供有用的见解,计算机辅助设计软件通常用于设计计算机芯片、汽车、飞机等,以便测试设备的操作。然而,与我们的宏观世界相反,纳米结构通常是通过自组装来实现的,其中各个组件随机扩散,直到它们相遇并组装成目标结构,以实现更复杂的结构。由于纳米结构能够以高产率进行自组装,因此需要一种新的模拟框架,该框架能够有效地同时准确地表示此类纳米结构的组装和功能。模拟自组装DNA纳米结构是目前生物纳米技术最先进的分支之一,研究团队将利用该框架来优化纳米结构组装以实现高产量,并通过计算设计新型可重构纳米结构。接下来,该团队将扩展建模。平台允许合并其他有机/无机分子和材料,并用它来设计一种可以优先朝一个方向移动的纳米游泳器总体而言,该项目将有助于创建能够执行任务的新型纳米设备。没有复杂的建模平台就很难通过实验实现的复杂任务,并使该领域更接近大规模工业应用。对于该项目的教育部分,研究团队将为大学生和公众开发新的学习机会。主要工作将涉及开发一个在线公民科学平台,用户可以使用模拟平台自行设计和优化结构,从而实现众包纳米技术设计。 技术摘要:核酸纳米技术是生物纳米技术最先进的分支之一。 ,有希望的然而,系统的规模(数千个核苷酸)和与其组装和功能相关的时间尺度(分钟到小时)使得它们的组装动力学建模非常具有挑战性。计算建模工具领域,可以将额外的分子和材料整合到 DNA 或 RNA 纳米结构中,模拟远离平衡的过程,例如 ATP 驱动的电机,并在长期实验中捕获纳米结构的组装和功能为了应对这一挑战,该项目将开发一系列新的粗粒度模型,可以模拟大规模纳米系统,用它们来研究 DNA 和 RNA 纳米结构组装动力学,并优化其设计以提高产量。框架设计具有受控折叠途径的新型 DNA 和 RNA 纳米结构,专门选择分子的一种可能的稳定构象,从而创建可重构的生物材料 接下来,研究团队将使用该建模平台设计一种由 ATP 驱动的生物材料。该项目开发的总体框架将允许模块化设计并利用不同材料(有机和无机)和功能分子复合物进行纳米技术构建,从而使纳米技术领域更接近工业规模应用和将理论建模纳入生物纳米技术设计流程中。PI 的教育计划将侧重于培训本科生和研究生掌握解决生物纳米技术问题所需的跨学科研究技能,利用不同领域的方法并创造实际的实践研究机会,作为该项目的一部分此外,该项目将开发一个公民科学在线平台,该平台将使用类似游戏的界面,玩家将解决设计功能性 DNA 纳米结构的实际科学问题,并使用开发的计算机模型进行测试。众包纳米结构的设计,从而为公众参与纳米技术研究提供一个平台。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Petr Sulc其他文献
Coarse-Grained Simulations Of Dna And Rna Systems With Oxdna And Oxrna Models: Tutorial
使用 Oxdna 和 Oxrna 模型对 DNA 和 Rna 系统进行粗粒度模拟:教程
- DOI:
10.1109/wsc60868.2023.10407580 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Matthew L. Sample;Michael Matthies;Petr Sulc - 通讯作者:
Petr Sulc
Petr Sulc的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Petr Sulc', 18)}}的其他基金
Collaborative Research: FET: Medium: Engineering DNA and RNA computation through simulation, sequence design, and experimental verification
合作研究:FET:中:通过模拟、序列设计和实验验证进行 DNA 和 RNA 计算
- 批准号:
2211794 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Data-informed Modeling for DNA and RNA Aptamer Design
DNA 和 RNA 适体设计的数据知情建模
- 批准号:
2155095 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Elements: Models and tools for on-line design and simulations for DNA and RNA nanotechnology
要素:DNA 和 RNA 纳米技术在线设计和模拟的模型和工具
- 批准号:
1931487 - 财政年份:2019
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
相似国自然基金
盾构主轴承激光微造型协同相变硬化的抗疲劳机理及主动设计
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
轴流压气机端壁造型流动机理及设计技术研究
- 批准号:52076179
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
基于知识重用的车身自动几何建模方法研究
- 批准号:51905389
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
产品造型的类比推理式对抗生成设计方法研究
- 批准号:51905175
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
复杂薄壁结构模型的设计与仿真集成过程中的关键技术研究
- 批准号:61902345
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
CAREER:HCC: Using Virtual Reality Gaming to Develop a Predictive Simulation of Human-Building Interactions: Behavioral and Emotional Modeling for Public Space Design
职业:HCC:使用虚拟现实游戏开发人类建筑交互的预测模拟:公共空间设计的行为和情感建模
- 批准号:
2339999 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Multiscale Reduced Order Modeling and Design to Elucidate the Microstructure-Property-Performance Relationship of Hybrid Composite Materials
职业:通过多尺度降阶建模和设计来阐明混合复合材料的微观结构-性能-性能关系
- 批准号:
2341000 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
CAREER: Physics-Infused Reduced-Order Modeling for Control Co-Design of Morphing Aerial Autonomous Systems
职业:用于变形空中自主系统控制协同设计的物理降阶建模
- 批准号:
2340266 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant