CAREER: Interfacial Engineering and Additive Printing of Flexible Thermoelectric Materials
职业:柔性热电材料的界面工程和增材印刷
基本信息
- 批准号:2238996
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2027-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) grant supports research focused on the independent control of electrical and thermal properties of thermoelectric composite films through interfacial engineering using additive-printing methods. The research aims to enable flexible thermoelectric devices that can harvest low-grade waste heat and generate a voltage output that can be used to charge sensor capacitors and batteries. These self-sufficient power supplies can eliminate the need for periodically charging health-monitoring devices and enable the uninterrupted monitoring of health parameters. These power supplies can also accelerate the adoption of continuous monitoring sensors used in wearable devices, buildings, structures, and defense. Existing additive manufacturing methods used for fabricating flexible thermoelectric devices involve long duration and high temperature curing cycles making them energy intensive. The state-of-the-art composite thermoelectric films, building blocks of thermoelectric devices, suffer from low performance due to the presence of insulating binder, poor interfacial connection between active particles, and interdependence of electron and phonon-transport properties. The scientific understanding of decoupling electron- and phonon-transport properties by modifying composite micro and nanostructures and interfaces using low-energy-input processing methods is necessary for improved thermoelectric performance. The availability of high-efficiency thermoelectric devices impacts the national priority of Clean Energy. The integrated research, education, and outreach components include expanding the mechanical engineering curriculum by introducing a course on flexible electronics, creating a new program to offer paid research opportunities to a diverse group of students, and developing a thermoelectric-generator kit for K-12 students.This research aims to decouple electron- and phonon-transport properties in thermoelectric composite films using low-energy-input stencil additive-printing methods which involve (1) the tuning of the distribution of thermoelectric particle (micro and nano) sizes, (2) creation of nanoscale binder interfaces, and (3) modification of composite micro and nanostructures using moderate curing and uniaxial pressure. Tuning the distribution of particle sizes establishes tradeoffs between micron sized particles, which provide a large mean free path for charge carriers, and nanosized particles and defects, which facilitate phonon scattering. The study of the nanoscale binder interfaces examines the interplay between how the binder amount affects electrical connection among active particles, facilitates thermal resistance, and influences the mechanical properties such as flexibility, adhesion, and strength of the film. The tuning of external uniaxial pressure develops a fundamental understanding of how applied pressure initiates defects and impacts thermoelectric properties. The research also demonstrates a proof-of-concept scalable flexible-thermoelectric generator (TEG) device, using the additive-printing method and roll-to-roll processing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项教师早期的职业发展(职业)赠款支持着专注于通过使用添加剂印刷方法的界面工程对热电复合膜对电气和热特性的独立控制的研究。该研究旨在实现柔性热电设备,该设备可以收获低级废热并产生电压输出,该电压输出可用于为传感器电容器和电池充电。这些自给自足的电源可以消除定期为健康监控设备收费的需求,并可以不间断地监视健康参数。这些电源还可以加速采用可穿戴设备,建筑物,结构和防御的连续监视传感器。用于制造柔性热电设备的现有添加剂制造方法涉及持续时间和高温固化周期,使其能量密集型。由于存在绝缘粘合剂的存在,活性颗粒之间的界面连接不佳以及电子和拼音传播特性,因此,最先进的复合热电膜(热电设备的构建块)的性能低。通过使用低能输入加工方法修改复合微型和纳米结构和接口,对解耦电子和声子传输性能的科学理解是为了改善热电性能的。高效热电设备的可用性会影响清洁能源的国家优先。综合研究,教育和外展组成部分包括通过引入灵活电子设备的课程,创建一个新计划,为多样化的学生提供付费研究机会,并为K-12开发热电学生成套件,从而扩大机械工程课程。该研究的目的是使用低能输入的模块添加剂打印方法来使热电复合膜中的电子和声子传输特性解脱,涉及(1)调整热电粒子(微型和nano)尺寸的分布(1)((1) 2)创建纳米级粘合剂界面,以及(3)使用中等固定和单轴压力修改复合微型和纳米结构。调整粒径的分布可以在微米大小的粒子之间建立权衡,这为电荷载体提供了较大的平均自由路径,以及纳米化的颗粒和缺陷,从而有助于声子散射。纳米级粘合剂界面的研究研究了粘合剂量如何影响活性颗粒之间的电连接之间的相互作用,从而促进了热电阻,并影响了机械性能,例如膜的柔韧性,粘附和强度。外部单轴压力的调整对施加压力如何引发缺陷并影响热电特性的基本了解。该研究还证明了使用添加剂印刷方法和滚动处理处理的可概念验证可伸缩的灵活性电压发电机(TEG)设备。该奖项反映了NSF的法定任务,并被认为是值得通过使用评估的支持。基金会的智力优点和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deepa Madan其他文献
Deepa Madan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deepa Madan', 18)}}的其他基金
Flexible Thermoelectric Devices for Wearable Applications
适用于可穿戴应用的柔性热电器件
- 批准号:
2400221 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
图案化光阳极的全域电场调控、界面工程及光解水性能研究
- 批准号:52373277
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
界面分子工程构筑高效稳定的DJ-2D/3D杂化钙钛矿太阳能电池
- 批准号:52363026
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
面向苛刻环境Ga2O3场效应晶体管的自组装单分子层界面工程
- 批准号:62304167
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
工程开挖与库水涨落条件下红层软硬界面性能演化与临滑机制
- 批准号:52369019
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于工程化益生菌的肠道脂质Pickering界面转化及肥胖干预研究
- 批准号:82304352
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Engineering Interfacial Flows and Instabilities in Solidifying Liquids
职业:工程界面流动和凝固液体的不稳定性
- 批准号:
2042930 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Resorbable, Phsophorylated Poly(ester urea) Surgical Adhesive to Enhance Fracture Healing
可吸收的磷酸化聚(酯脲)手术粘合剂可促进骨折愈合
- 批准号:
10283703 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Resorbable, Phsophorylated Poly(ester urea) Surgical Adhesive to Enhance Fracture Healing
可吸收的磷酸化聚(酯脲)手术粘合剂可促进骨折愈合
- 批准号:
10474458 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Magneto-patterned cartilage constructs for improved osteochondral integration
磁图案软骨结构可改善骨软骨整合
- 批准号:
10395420 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Resorbable, Phsophorylated Poly(ester urea) Surgical Adhesive to Enhance Fracture Healing
可吸收的磷酸化聚(酯脲)手术粘合剂可促进骨折愈合
- 批准号:
10674973 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别: