Collaborative Research: Data-Driven Microreaction Engineering by Autonomous Robotic Experimentation in Flow
协作研究:通过自主机器人实验进行数据驱动的微反应工程
基本信息
- 批准号:2208406
- 负责人:
- 金额:$ 37.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Existing experimental strategies often fail to comprehensively explore the reaction universe of new chemicals and materials created with multi-step synthesis procedures. Given the resource-limited nature of experimental searches to find the best reactants and reaction conditions for a certain chemical product, the resulting ad-hoc or uninformed selection of experiments will likely fail to uncover valuable reaction process insights. This collaborative research project will create a science and engineering knowledge framework for accelerated mechanistic reaction studies and synthesis process development of emerging materials and molecules with multi-stage chemistries through a modular approach to chemical synthesis guided by a multi-stage artificial intelligence (AI) strategy. The research team will produce a new data-driven scientific approach to accelerate design and synthesis of high-performing materials and molecules, reducing development time from years to months. Potential applications include energy and chemical technologies, resulting in clear benefits to the nation's prosperity, health, and security. This interdisciplinary research project involves integration of multiple fields including reaction engineering, materials science, and AI. This project will train graduate and undergraduate students in data-driven microreaction engineering and AI-assisted experimentation. The interdisciplinary nature of this collaborative project will enhance participation of students from groups traditionally underrepresented in STEM-related research. Furthermore, the results of this project will positively impact modern engineering education through hands-on lab modules for undergraduate students and tutorial YouTube videos, free to the public and based on the knowledge generated by this research.Implementation of data-driven reaction engineering concepts for emerging solution-processed materials and molecules with multi-stage chemistries require fundamental advancements of AI-guided reaction space exploration, surrogate modeling, and modular experimentation. This project seeks to develop the science base and understanding of modular AI modeling and decision-making strategies for data-driven microreaction engineering through closed-loop modular experimentation. This will enable time- and resource-efficient navigation through the multivariate chemical synthesis space of emerging solution-processed materials and molecules with multi-stage chemistries. The modular AI modeling effort will result in new algorithms that incorporate problem-specific structure and decision-making modalities, enabling autonomous experimentation to move past proof-of-concept demonstrations. Specifically, data-driven microreaction engineering of colloidal quantum dots (QDs) will be targeted, a choice driven by the intriguing size- and composition-tunable optical and optoelectronic properties of QDs as well as multi-stage and process-sensitive synthesis. The results of this collaborative project will advance the state-of-the-art AI-guided chemical synthesis, while lowering the barrier to the use of AI techniques, enabling their broad application among other scientific domains. Furthermore, the modular surrogate modeling of the multi-stage flow reactor systems can be used for evaluation, testing, and validation of kinetics and mechanistic models of nanocrystal nucleation and growth. The autonomous and modular flow synthesis strategy will result in a transferable computational framework that can be applied to other problems in chemical science and engineering, including the models that capture multi-stage, multi-objective process optimization, a problem ubiquitous throughout experimental sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现有的实验策略往往无法全面探索通过多步合成程序创建的新化学品和材料的反应领域。鉴于为某种化学产品寻找最佳反应物和反应条件的实验搜索的资源有限性,由此产生的临时或不知情的实验选择可能无法揭示有价值的反应过程见解。该合作研究项目将创建一个科学和工程知识框架,通过多阶段人工智能(AI)策略指导下的化学合成模块化方法,加速机械反应研究以及多阶段化学新兴材料和分子的合成工艺开发。研究团队将提出一种新的数据驱动的科学方法,以加速高性能材料和分子的设计和合成,将开发时间从几年缩短到几个月。潜在的应用包括能源和化学技术,为国家的繁荣、健康和安全带来明显的好处。该跨学科研究项目涉及反应工程、材料科学、人工智能等多个领域的融合。该项目将培训研究生和本科生进行数据驱动的微反应工程和人工智能辅助实验。该合作项目的跨学科性质将提高传统上在 STEM 相关研究中代表性不足的群体的学生的参与度。此外,该项目的结果将通过本科生的实践实验室模块和 YouTube 教程视频,免费向公众开放并基于本研究产生的知识,对现代工程教育产生积极影响。数据驱动的反应工程概念的实施新兴的溶液加工材料和多级化学分子需要人工智能引导的反应空间探索、替代建模和模块化实验的根本进步。该项目旨在通过闭环模块化实验,为数据驱动的微反应工程开发模块化人工智能建模和决策策略的科学基础和理解。这将能够在新兴溶液加工材料和多级化学分子的多元化学合成空间中实现时间和资源高效的导航。模块化人工智能建模工作将产生新的算法,其中结合了特定问题的结构和决策模式,使自主实验能够超越概念验证演示。具体来说,数据驱动的胶体量子点(QD)微反应工程将成为目标,这是由量子点有趣的尺寸和成分可调光学和光电特性以及多阶段和过程敏感合成驱动的选择。该合作项目的成果将推动最先进的人工智能引导化学合成,同时降低人工智能技术的使用障碍,使其能够在其他科学领域得到广泛应用。此外,多级流动反应器系统的模块化替代建模可用于纳米晶体成核和生长的动力学和机械模型的评估、测试和验证。自主和模块化流程合成策略将产生一个可转移的计算框架,可应用于化学科学和工程中的其他问题,包括捕获多阶段、多目标过程优化的模型,这是整个实验科学中普遍存在的问题。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Milad Abolhasani其他文献
Modeling of the formation kinetics and size distribution evolution of II–VI quantum dots
- DOI:
10.1039/c7re00068e - 发表时间:
2017-06 - 期刊:
- 影响因子:3.9
- 作者:
Stefano Lazzari;Milad Abolhasani;Klavs F. Jensen - 通讯作者:
Klavs F. Jensen
Automated microfluidic platform for systematic studies of colloidal perovskite nanocrystals: towards continuous nano-manufacturing
- DOI:
10.1039/c7lc00884h - 发表时间:
2017-10 - 期刊:
- 影响因子:6.1
- 作者:
Robert W. Epps;Kobi C. Felton;Connor W. Coley;Milad Abolhasani - 通讯作者:
Milad Abolhasani
Flow chemistry-enabled studies of rhodium-catalyzed hydroformylation reactions
- DOI:
10.1039/c8cc04650f - 发表时间:
2018-07 - 期刊:
- 影响因子:4.9
- 作者:
Cheng Zhu;Keshav Raghuvanshi;Connor W. Coley;Dawn Mason;Jody Rodgers;Mesfin E. Janka;Milad Abolhasani - 通讯作者:
Milad Abolhasani
A low-cost, non-invasive phase velocity and length meter and controller for multiphase lab-in-a-tube devices
- DOI:
10.1039/c9lc00296k - 发表时间:
2019-04 - 期刊:
- 影响因子:6.1
- 作者:
Corwin B. Kerr;Robert W. Epps;Milad Abolhasani - 通讯作者:
Milad Abolhasani
Intensified recovery of switchable hydrophilicity solvents in flow
- DOI:
10.1039/d1cc03819b - 发表时间:
2021-09 - 期刊:
- 影响因子:4.9
- 作者:
Suyong Han;Malek Y. S. Ibrahim;Milad Abolhasani - 通讯作者:
Milad Abolhasani
Milad Abolhasani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Milad Abolhasani', 18)}}的其他基金
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315996 - 财政年份:2024
- 资助金额:
$ 37.6万 - 项目类别:
Standard Grant
Workshop: Foundation for Unmanned Technological Utilization, Research, and Exploration (FUTURE) Labs
研讨会:无人技术利用、研究和探索(未来)实验室基金会
- 批准号:
2332452 - 财政年份:2023
- 资助金额:
$ 37.6万 - 项目类别:
Standard Grant
CAREER: Intelligent Synthesis of Colloidal Nanocrystals Enabled by Microreaction Engineering in Flow
职业:流动微反应工程实现胶体纳米晶体的智能合成
- 批准号:
1940959 - 财政年份:2020
- 资助金额:
$ 37.6万 - 项目类别:
Continuing Grant
Collaborative Research: Continuous Manufacturing of Hetero-Nanostructures Enabled by Colloidal Atomic Layer Deposition
合作研究:通过胶体原子层沉积实现异质纳米结构的连续制造
- 批准号:
1902702 - 财政年份:2019
- 资助金额:
$ 37.6万 - 项目类别:
Standard Grant
GOALI: Manufacturing USA: Elastomeric Microparticle-Packed Bed Reactor for Continuous Metal-Mediated Pseudo-Homogeneous Catalysis
GOALI:美国制造:用于连续金属介导的伪均相催化的弹性体微粒填充床反应器
- 批准号:
1803428 - 财政年份:2018
- 资助金额:
$ 37.6万 - 项目类别:
Standard Grant
相似国自然基金
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
网络空间中基于泛配置类数据的协作性恶意行为识别研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于无人机遥感成像及分布式数据协作的光伏发电预测理论研究
- 批准号:51907151
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
面向协作式云计算的数据完整性验证理论与方法研究
- 批准号:61702379
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
面向多学科协作的数据世系建模及溯源关键问题研究
- 批准号:U1630115
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:联合基金项目
相似海外基金
Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
- 批准号:
2324711 - 财政年份:2024
- 资助金额:
$ 37.6万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
- 批准号:
2325838 - 财政年份:2024
- 资助金额:
$ 37.6万 - 项目类别:
Standard Grant
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
- 批准号:
2323084 - 财政年份:2024
- 资助金额:
$ 37.6万 - 项目类别:
Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
- 批准号:
2347992 - 财政年份:2024
- 资助金额:
$ 37.6万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 37.6万 - 项目类别:
Standard Grant