CAREER: Mechanistic understanding of the nanoscale interactions of structurally tunable 3D assemblies of MXenes-polyelectrolytes

职业:对 MXenes-聚电解质结构可调 3D 组件的纳米级相互作用的机理理解

基本信息

项目摘要

Functional materials that predominantly absorb electromagnetic waves are desired for several applications relevant to the security and prosperity of the United States. These materials have a wide range of applications, including but not limited to preventing the interference of aircraft digital instruments, mitigating signal jamming, enhancing the performance of wireless devices, and safeguarding control of electronics for power grid systems. Most of the electromagnetic shields that are widely used at present rely mainly on reflecting the incident waves, which can result in secondary pollution. This Faculty Early Career Development project will combine experimental and computational studies to investigate how the molecular interactions between charge-containing polymers and two-dimensional carbides MXenes can be utilized to create functional materials with tunable electromagnetic wave absorption. This project will develop a science-based connection between the chemistry of charged macromolecules and MXenes and the mechanisms by which they interact, and form intricate, hierarchical nanoscale structures. In addition, this project will provide opportunities for high school, undergraduate, and graduate students, as well as STEM teachers, to engage in hands-on experiments and workshops. The project also involves curriculum development related to the synthesis, characterization, and application of hybrid functional materials based on nanoscale interactions. Regional research symposia on two-dimensional materials will also be organized to facilitate knowledge-sharing among the broader scientific community.The integration of MXenes and charged polymers within three-dimensional hybrid structures presents an enticing prospect for developing hybrid materials with adjustable mechanical and electrochemical properties. Nevertheless, creating such three-dimensional assemblies can prove difficult due to the complex surface chemistry of MXenes, which can result in uncontrolled interactions and, ultimately, aggregation. A key challenge in the field of MXene nanomaterials is gaining a fundamental understanding of these interactions and discovering methods to manipulate them effectively. This CAREER project addresses this challenge by integrating experimental and computational modeling through three interconnected research thrusts. The first thrust focuses on comprehending the nanoscale interactions between MXenes and polyelectrolytes, while the second thrust aims to exploit these interactions to direct the 3D bottom-up assembly. The third thrust involves the bottom-up structural modulation of electromagnetic wave absorption. The dynamics of assembly and the development of morphology and composition will be studied at multiple length scales. The regulation of morphology is accomplished by managing the conformation of the adsorbed polymer chains on MXene nanosheets, which controls the nanostructure of the MXene-polyelectrolyte heterointerface. The impact of various molecular characteristics of polyelectrolytes and MXenes, as well as hydrodynamic forces, on their interactions at heterointerfaces and the assembly of MXenes-polyelectrolyte into hybrid structures will be explored. This project will also demonstrate how controlling the interface nanostructure can lead to the creation of hybrid materials with improved microwave absorption, which arises from tunable electrical conductivity and interfacial polarization. The fundamental knowledge obtained from this research has the potential to inform the development of other MXene-based hybrids for applications in antimicrobial materials and water treatment. This project will integrate research, teaching, and outreach initiatives to advance scientific innovation while educating and inspiring a diverse, inclusive group of future STEM students and researchers.This project is jointly funded by the CBET Nanoscale Interactions Program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对于与美国的安全性和繁荣相关的几种应用,需要主要吸收电磁波的功能材料。这些材料具有广泛的应用,包括但不限于防止飞机数字仪器的干扰,减轻信号干扰,增强无线设备的性能以及保护电网系统的电子设备的控制。目前广泛使用的大多数电磁盾牌主要依赖于反映入射波,这可能导致继发性污染。这个教师早期职业发展项目将结合实验和计算研究,以研究如何利用含电荷聚合物与二维碳化物MXENES之间的分子相互作用来创建具有可调电磁波吸收的功能材料。该项目将在带电的大分子和MXENES的化学之间建立基于科学的联系以及它们相互作用的机制,并形成复杂的分层纳米级结构。此外,该项目将为高中,本科生和研究生以及STEM老师提供机会,从事动手实验和讲习班。该项目还涉及与基于纳米级相互作用的混合功能材料的合成,表征和应用有关的课程开发。还将组织有关二维材料的区域研究研讨会,以促进更广泛的科学界的知识共享。在三维混合结构中,MXENES和为聚合物的集成构成了一种诱人的前景,是一种具有可调节机械和电化学性质的混合材料的诱人前景。然而,由于MXENES的复杂表面化学性能,创建这样的三维组件可能很困难,这可能导致不受控制的相互作用,并最终导致聚集。 MXENE纳米材料领域的一个主要挑战是对这些相互作用的基本了解,并发现有效操纵它们的方法。这个职业项目通过通过三个相互联系的研究推力整合实验和计算建模来解决这一挑战。第一个推力重点是理解MXENES和聚电解质之间的纳米级相互作用,而第二个推力旨在利用这些相互作用来指导3D自下而上的组件。第三个推力涉及电磁波吸收的自下而上的结构调节。组装动力学以及形态和组成的发展将以多长度尺度进行研究。形态的调节是通过管理MXENE纳米片上吸附的聚合物链的构象来完成的,该nan片控制MXENE-聚纤维电解质异源界面的纳米结构。将探索聚电解质和MXENES以及流体动力的各种分子特征对异质界面相互作用的影响以及MXENES-聚电解质对混合结构的组装的影响。该项目还将证明如何控制界面纳米结构可以通过改进的微波吸收而产生杂种材料,这是由可调的电导率和界面极化引起的。从这项研究中获得的基本知识有可能告知其他基于MXENE的杂种用于抗菌材料和水处理的应用。 This project will integrate research, teaching, and outreach initiatives to advance scientific innovation while educating and inspiring a diverse, inclusive group of future STEM students and researchers.This project is jointly funded by the CBET Nanoscale Interactions Program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nader Taheri Qazvini其他文献

Nader Taheri Qazvini的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

典型热带生态系统大气零价汞源汇格局变化及机理解析
  • 批准号:
    42377255
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
SlCNR8调控番茄植株衰老的机理解析
  • 批准号:
    32360766
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
考虑多层次社会网络的乡村居民活动-出行行为特征辨识及决策机理解析
  • 批准号:
    72361015
  • 批准年份:
    2023
  • 资助金额:
    26 万元
  • 项目类别:
    地区科学基金项目
腈水解酶的催化杂泛性机理解析及其在S-2,2-二甲基环丙烷甲酰胺合成中的应用
  • 批准号:
    22308332
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
典型喀斯特农田-次生林-原生林大气汞源汇格局演变过程与机理解析
  • 批准号:
    42377246
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Mechanistic Understanding and Strategies to Improve the Regeneration of Supported Nickel Catalysts for Methane Conversion
职业:提高甲烷转化负载型镍催化剂再生的机理理解和策略
  • 批准号:
    2238213
  • 财政年份:
    2023
  • 资助金额:
    $ 62.32万
  • 项目类别:
    Continuing Grant
Mechanistic Understanding of Hypoxia-Induced Peroxisome loss: Implications for Heart Failure
缺氧引起的过氧化物酶体损失的机制理解:对心力衰竭的影响
  • 批准号:
    10840053
  • 财政年份:
    2023
  • 资助金额:
    $ 62.32万
  • 项目类别:
Mechanistic Understanding of Hypoxia-Induced Peroxisome loss: Implications for Heart Failure
缺氧引起的过氧化物酶体损失的机制理解:对心力衰竭的影响
  • 批准号:
    10427935
  • 财政年份:
    2022
  • 资助金额:
    $ 62.32万
  • 项目类别:
Towards a mechanistic understanding of the role of gut microbiota in postnatal growth impairment
从机制上理解肠道微生物群在产后生长障碍中的作用
  • 批准号:
    10655393
  • 财政年份:
    2022
  • 资助金额:
    $ 62.32万
  • 项目类别:
Towards a mechanistic understanding of the role of gut microbiota in postnatal growth impairment
从机制上理解肠道微生物群在产后生长障碍中的作用
  • 批准号:
    10765586
  • 财政年份:
    2022
  • 资助金额:
    $ 62.32万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了