CAREER: Differentiable Programming for Visual Computing

职业:视觉计算的可微分编程

基本信息

  • 批准号:
    2238839
  • 负责人:
  • 金额:
    $ 61.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-03-01 至 2028-02-29
  • 项目状态:
    未结题

项目摘要

Deep neural networks are a modern machine learning method that is known to produce excellent results for processing visual data such as images and 3D content. However, deep neural networks have some known limitations. They usually do not model the underlying physical process (e.g., light transport or dynamics) directly, they require significant computational resources for training and inference, and they are difficult to debug and control. On the other hand, while classical visual computing algorithms that explicitly model the formation of visual data (e.g., how a camera captures a picture or how objects move physically) suffer less from these issues, they often do not apply as broadly as modern machine learning methods because they do not learn from a large amount of experience. This research will bridge the gap between the two approaches by creating classical visual computing algorithms that are differentiable. That is, the functioning of these algorithms depends smoothly on a set of internal parameters that can be tuned automatically using deep learning approaches. The project will optimize these domain-specific differentiable visual computing programs using data to get the best of both worlds. Project outcomes will have broad impact in applications such as enabling self-driving cars to make better decisions, training robots to interact with the environment using physical information, creating more realistic virtual worlds, designing buildings with better lighting, designing physical objects with desired appearance and functionality, and allowing movie artists to create better film shots. The systems developed through this research will be incorporated into new programming courses and tutorials, and the PI is committed to working with early career scholar programs to promote participation in visual computing and differentiable programming.This project pursues a synergistic plan that includes the design of differentiable programming systems, algorithms, and applications. To these ends, it will be necessary to adapt domain-specific algorithms and compute their derivatives in correct and efficient manners, to design new visual computing algorithms that leverage both data-driven priors and domain-specific knowledge, and to parameterize the problem for optimization to avoid local minima and satisfy constraints. Neither traditional automatic differentiation nor modern deep learning systems address these challenges. The algorithms, systems, and applications will evolve together to help each other. Concretely, this project will develop differentiable programming languages that can properly handle discontinuities, and automatically optimize code performance to efficiently process millions or billions of pixels, particles, or triangles by exploiting structured sparsity in visual computing programs. It will also develop new domain-specific differentiable visual computing algorithms with improved efficiency and accuracy in image processing and physical simulation, by retaining the structures of classical algorithms while replacing hand-built heuristic components of the algorithm with data-driven elements.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度神经网络是一种现代机器学习方法,众所周知,它可以在处理图像和 3D 内容等视觉数据方面产生出色的结果。然而,深度神经网络有一些已知的局限性。它们通常不会直接对底层物理过程(例如光传输或动力学)进行建模,它们需要大量的计算资源来进行训练和推理,并且难以调试和控制。另一方面,虽然显式模拟视觉数据形成(例如相机如何捕捉图片或物体如何物理移动)的经典视觉计算算法较少受到这些问题的影响,但它们通常不像现代机器学习那样广泛应用方法,因为他们没有从大量经验中学习。这项研究将通过创建可微分的经典视觉计算算法来弥补这两种方法之间的差距。也就是说,这些算法的功能平稳地依赖于一组可以使用深度学习方法自动调整的内部参数。该项目将使用数据优化这些特定领域的可微视觉计算程序,以获得两全其美的效果。项目成果将对应用产生广泛影响,例如使自动驾驶汽车能够做出更好的决策、训练机器人使用物理信息与环境交互、创建更真实的虚拟世界、设计具有更好照明的建筑物、设计具有所需外观的物理对象以及功能,并允许电影艺术家创作更好的电影镜头。通过这项研究开发的系统将被纳入新的编程课程和教程中,PI致力于与早期职业学者项目合作,以促进对视觉计算和可微分编程的参与。该项目追求一个协同计划,包括可微分编程的设计编程系统、算法和应用程序。为此,有必要采用特定领域的算法并以正确有效的方式计算其导数,设计利用数据驱动先验和特定领域知识的新视觉计算算法,并对问题进行参数化以进行优化避免局部极小值并满足约束。传统的自动微分和现代深度学习系统都无法解决这些挑战。算法、系统和应用程序将共同发展,互相帮助。具体来说,该项目将开发可微的编程语言,能够正确处理不连续性,并通过利用视觉计算程序中的结构化稀疏性来自动优化代码性能,以有效地处理数百万或数十亿个像素、粒子或三角形。它还将通过保留经典算法的结构,同时用数据驱动元素取代算法的手工构建启发式组件,开发新的特定领域可微视觉计算算法,提高图像处理和物理模拟的效率和准确性。该奖项反映了通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Discontinuity-Aware 2D Neural Fields
  • DOI:
    10.1145/3618379
  • 发表时间:
    2023-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yash Belhe;Michaël Gharbi;Matthew Fisher;Iliyan Georgiev;Ravi Ramamoorthi;Tzu-Mao Li
  • 通讯作者:
    Yash Belhe;Michaël Gharbi;Matthew Fisher;Iliyan Georgiev;Ravi Ramamoorthi;Tzu-Mao Li
Physical Cyclic Animations
SLANG.D: Fast, Modular and Differentiable Shader Programming
  • DOI:
    10.1145/3618353
  • 发表时间:
    2023-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sai Praveen Bangaru;Lifan Wu;Tzu-Mao Li;Jacob Munkberg;Gilbert Bernstein;Jonathan Ragan-Kelley;Frédo Durand;Aaron E. Lefohn;Yong He
  • 通讯作者:
    Sai Praveen Bangaru;Lifan Wu;Tzu-Mao Li;Jacob Munkberg;Gilbert Bernstein;Jonathan Ragan-Kelley;Frédo Durand;Aaron E. Lefohn;Yong He
Acting as Inverse Inverse Planning
充当逆向规划
  • DOI:
    10.1145/3588432.3591510
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chandra, Kartik;Li, Tzu-Mao;Tenenbaum, Joshua;Ragan-Kelley, Jonathan
  • 通讯作者:
    Ragan-Kelley, Jonathan
Inferring the Future by Imagining the Past
通过想象过去来推断未来
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tzu-Mao Li其他文献

Differentiable Visual Computing
  • DOI:
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tzu-Mao Li
  • 通讯作者:
    Tzu-Mao Li

Tzu-Mao Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

可微分三维辐射传输建模与高分辨率冠层参数反演
  • 批准号:
    42371345
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于可微分光线追踪的端到端折衍射复杂透镜混合设计
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
三维微分系统的可积性与动力学
  • 批准号:
    12301205
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高效率可微分蒙特卡洛光线追踪渲染算法与系统研究
  • 批准号:
    62372257
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
足式机器人虚实融合可微分仿真理论与应用研究
  • 批准号:
    62373242
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

ELEMENTS: CLAD ENABLING DIFFERENTIABLE PROGRAMMING IN SCIENCE
元素:CLAD 实现科学中的差异化编程
  • 批准号:
    2311471
  • 财政年份:
    2023
  • 资助金额:
    $ 61.51万
  • 项目类别:
    Standard Grant
Differentiable Programming for Computer Vision and Medical Image Analysis
计算机视觉和医学图像分析的可微分编程
  • 批准号:
    RGPIN-2020-04139
  • 财政年份:
    2022
  • 资助金额:
    $ 61.51万
  • 项目类别:
    Discovery Grants Program - Individual
Exploiting Differentiable Programming Models For Protein Structure Prediction And Modelling
利用可微分编程模型进行蛋白质结构预测和建模
  • 批准号:
    BB/W008556/1
  • 财政年份:
    2022
  • 资助金额:
    $ 61.51万
  • 项目类别:
    Research Grant
Collaborative Research: Frameworks: Convergence of Bayesian inverse methods and scientific machine learning in Earth system models through universal differentiable programming
协作研究:框架:通过通用可微编程将贝叶斯逆方法和科学机器学习在地球系统模型中融合
  • 批准号:
    2103791
  • 财政年份:
    2021
  • 资助金额:
    $ 61.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: Convergence of Bayesian inverse methods and scientific machine learning in Earth system models through universal differentiable programming
协作研究:框架:通过通用可微编程将贝叶斯逆方法和科学机器学习在地球系统模型中融合
  • 批准号:
    2104009
  • 财政年份:
    2021
  • 资助金额:
    $ 61.51万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了