Development of Ultrafast Cavity-Enhanced Two-Dimensional Spectroscopy for Coherent Control Experimental Design

用于相干控制实验设计的超快腔增强二维光谱学的发展

基本信息

项目摘要

With support from the programs in Atomic, Molecular and Optical Experimental Physics (AMO-E), Chemical Structure, Dynamics and Mechanisms-A (CSDM-A) and Integrative Activities in Physics, Prof. Melanie Reber at the University of Georgia is increasing the sensitivity of a laser technique for studying and controlling molecules. The idea of using light to selectively control the breaking of a bond and to control the outcome of a chemical reaction is a long-standing dream. It could potentially provide new avenues to synthesize molecules or even create new molecules. In order to use light for a controlled synthesis, ideally one would have detailed knowledge about the molecular electronic, vibrational, and rotational energy landscapes and how they are coupled. One challenge with describing the molecular system for designing control sequences is if the molecule has complicated dynamics that are not well described by current computational chemistry or spectroscopic methods. This project will develop a spectroscopy-driven approach to designing coherent control experiments, specifically improving the sensitivity and resolution of two-dimensional spectroscopy through the use of optical enhancement cavities and frequency comb lasers. Two-dimensional spectroscopy provides information about the structure and dynamics of molecules, but currently can only be used on condensed-phase samples. Over the three years of the project, the research team will develop the capability to perform multidimensional spectroscopy on dilute species, enabling studies of small, isolated molecules without the effects of solvent, for example. The students working on this highly-technical project will gain valuable interdisciplinary training in electronics, optics, lasers, vacuum technology, programming, data analysis, CAD design, and quantum mechanics. This training will set the students up for successful careers in technical fields in industry and academia. In addition, the PI will start a yearly workshop aimed at students from local colleges, including several HBCU’s, to learn about chemistry and physics graduate school and the application process.The research team will develop a high-resolution and ultrafast two-dimensional spectrometer for characterization of vibrational and electronic coupling in molecules for a detailed molecular approach to designing coherent control experiments. The main goal of the project is to build the cavity-enhanced two-dimensional spectrometer with a visible pump and tunable visible probe with a dual comb detection scheme. They will use frequency comb lasers and techniques, including dual-comb detection, to increase the sensitivity and enable high-resolution spectral detection. The cavity-enhancement will improve the sensitivity of two-dimensional spectroscopy, such that dilute species in molecular beams can be studied with two-dimensional spectroscopy for the first time. This instrument will then provide new data on the structure and dynamics of gas phase molecules with the potential for ultrafast time resolution and high-precision frequency resolution to be used for coherent control experimental design.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在原子、分子和光学实验物理 (AMO-E)、化学结构、动力学和机理-A (CSDM-A) 以及物理学综合活动项目的支持下,佐治亚大学的 Melanie Reber 教授正在增加利用光选择性地控制化学键断裂并控制化学反应结果的激光技术的敏感性是一个长期存在的梦想,它可能会带来新的希望。为了利用光进行受控合成,人们最好对分子电子、振动和旋转能量景观以及它们如何耦合有详细的了解。设计控制序列的一个问题是,如果分子具有当前计算化学或光谱方法无法很好描述的复杂动力学,该项目将开发一种光谱驱动的方法来设计相干控制实验,特别是提高二维光谱的灵敏度和分辨率。通过使用光学增强腔和频率梳激光器提供有关分子结构和动力学的信息,但目前只能用于凝聚相样品。在该项目的三年内,研究团队将开发以下能力:例如,对稀物质进行多维光谱分析,从而能够在不受溶剂影响的情况下研究小而孤立的分子,从事这一高科技项目的学生将获得电子、光学、激光、真空技术、编程、数据等方面的宝贵跨学科培训。该培训将为学生在工业界和学术界的技术领域取得成功奠定基础。此外,PI 还将针对当地大学(包括几所 HBCU 的学生)举办年度研讨会。关于化学和物理研究生院和申请过程。研究团队将开发一种高分辨率和超快的二维光谱仪,用于表征分子中的振动和电子耦合,以实现设计相干控制实验的详细分子方法的主要目标。该项目是他们将使用频梳激光器和技术(包括双梳检测)来构建具有可见光泵浦和可调谐可见光探头的腔增强二维光谱仪,以提高灵敏度并实现高分辨率光谱。腔增强将提高二维光谱的灵敏度,从而首次可以用二维光谱研究分子束中的稀物质,然后该仪器将提供有关结构和特征的新数据。气相分子动力学,具有超快时间分辨率和高精度频率分辨率的潜力,可用于相干控制实验设计。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Melanie Reber其他文献

Ultrafast Structured Light through Nonlinear Frequency Generation in an Optical Enhancement Cavity
通过光学增强腔中的非线性频率生成超快结构光
  • DOI:
  • 发表时间:
    2024-05-20
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Walker M Jones;Melanie Reber
  • 通讯作者:
    Melanie Reber
Arbeitsfähig bis ins Rentenalter
出租人的工作
  • DOI:
    10.1515/arbeit-2019-0010
  • 发表时间:
    2019-06-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Melanie Reber;A. Jansen
  • 通讯作者:
    A. Jansen

Melanie Reber的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Melanie Reber', 18)}}的其他基金

CAREER: Detecting Quantum Signatures in Nonadiabatic Molecular Dynamics
职业:检测非绝热分子动力学中的量子特征
  • 批准号:
    2340180
  • 财政年份:
    2024
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Continuing Grant

相似国自然基金

有源超表面中模式耦合的超快调控研究
  • 批准号:
    62305084
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
激光成丝超连续光谱及中红外少光学周期超快激光同步产生技术研究
  • 批准号:
    62375154
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
超快声波脉冲原位光诱导与超高时空分辨成像关键技术
  • 批准号:
    62335003
  • 批准年份:
    2023
  • 资助金额:
    235 万元
  • 项目类别:
    重点项目
基于四维超快电镜和超快吸收显微镜等方法研究钛酸锶和氧化亚铜等光催化剂的载流子动力学
  • 批准号:
    22302191
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
超快超高压SiC脉冲功率器件离化增强输运机理与新结构研究
  • 批准号:
    62304033
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Ultrafast sintering of dental zirconia: composition-processing-property relationships with high-throughput fail-fast screening
牙科氧化锆的超快烧结:成分-加工-性能关系与高通量快速失败筛选
  • 批准号:
    10792738
  • 财政年份:
    2023
  • 资助金额:
    $ 52.57万
  • 项目类别:
Widely Tunable Cavity-Enhanced Ultrafast Spectroscopy and the Dynamics of Hydrogen Bond Networks
宽可调腔增强超快光谱和氢键网络动力学
  • 批准号:
    1708743
  • 财政年份:
    2017
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Continuing Grant
An RF cavity-based ultrafast electron energy loss spectrometer: A new tool for unraveling dynamic processes in materials
基于射频腔的超快电子能量损失谱仪:一种用于揭示材料动态过程的新工具
  • 批准号:
    RTI-2018-00862
  • 财政年份:
    2017
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Research Tools and Instruments
An RF cavity-based ultrafast electron energy loss spectrometer: A new tool for unraveling dynamic processes in materials
基于射频腔的超快电子能量损失谱仪:一种用于揭示材料动态过程的新工具
  • 批准号:
    RTI-2018-00862
  • 财政年份:
    2017
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Research Tools and Instruments
Cavity Enhanced Ultrafast Transient Absorption Spectroscopy
腔增强超快瞬态吸收光谱
  • 批准号:
    1404296
  • 财政年份:
    2014
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了