CAREER: Nonlocal partial differential equations in collective dynamics and fluid flow

职业:集体动力学和流体流动中的非局部偏微分方程

基本信息

  • 批准号:
    2238219
  • 负责人:
  • 金额:
    $ 40.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2028-07-31
  • 项目状态:
    未结题

项目摘要

The collective behaviors of large groups of similar animals, e.g., birds, insects, or fishes, are ubiquitous in nature. In recent times, the mathematical study of collective dynamics has become an active and fast-growing field of research. Many mathematical models of collective behavior rely on partial differential equations with nonlocal interactions to describe the resulting emergent behavior. It turns out that these models are intimately connected to other models traditionally used in fluid dynamics. The goal of this project is to study several models of nonlocal partial differential equations to model collective behavior or fluid flows, and to develop novel and robust analytical techniques to understand the collective behaviors driven by nonlocal structures. The training and professional development of graduate students and young researchers is an integral part of the project. This project studies three families of partial differential equations with shared nonlocal structures that can affect the solutions of the equations: existence, uniqueness, regularity, and long-time asymptotic behaviors. The first problem is on the compressible Euler system with nonlinear velocity alignment, which describes the remarkable flocking phenomenon in animal swarms. Global phenomena and asymptotic behaviors of the system will be investigated, with a focus on the nonlinearity in the velocity alignment. The second problem is on the pressureless Euler system, aiming at the long-standing question of the uniqueness of weak solutions. The plan is to approximate the system by the relatively well-studied Euler-alignment system in collective dynamics. The third problem is on the Euler-Monge-Ampère system which is closely related to the incompressible Euler equations in fluid dynamics. The embedded nonlocal geometric structure of the system will be explored, with interesting applications in optimal transport and mean-field games.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大型动物的集体行为,例如,集体动力学的ematightive研究已成为偏微分方程的集体行为。部分差异方程式用于模拟集体行为或流体的Ynonlocal结构。存在。近似于集体动力学中的逐渐研究的Euler-Anignment System。现场游戏。该奖项重新授予NSFLECT的法定任务,并认为基金会的知识分子优点和影响ERIA ERIA的智力优点和影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Changhui Tan其他文献

First-order aggregation models with alignment
具有对齐功能的一阶聚合模型
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Fetecau;Weiran Sun;Changhui Tan
  • 通讯作者:
    Changhui Tan
Hierarchical Construction of Bounded Solutions of div U=F in Critical Regularity Spaces
临界正则空间中div U=F有界解的层次构造
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Tadmor;Changhui Tan
  • 通讯作者:
    Changhui Tan
A discontinuous Galerkin method on kinetic flocking models
动力学植绒模型的间断伽辽金法
Critical threshold for global regularity of Euler-Monge-Amp`ere system with radial symmetry
径向对称Euler-Monge-Amp`ere系统全局正则性临界阈值
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Tadmor;Changhui Tan
  • 通讯作者:
    Changhui Tan
On the global classical solution to compressible Euler system with singular velocity alignment
奇异速度对准的可压缩欧拉系统的全局经典解
  • DOI:
    10.4310/maa.2021.v28.n2.a3
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0.3
  • 作者:
    Li Chen;Changhui Tan;Lining Tong
  • 通讯作者:
    Lining Tong

Changhui Tan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Changhui Tan', 18)}}的其他基金

Nonlocal Transport Equations in Fluids, Swarming, and Traffic Flows
流体、蜂群和交通流中的非局域传输方程
  • 批准号:
    2108264
  • 财政年份:
    2021
  • 资助金额:
    $ 40.42万
  • 项目类别:
    Continuing Grant
Regularity and Singularity Formation in Swarming and Related Fluid Models
集群及相关流体模型中的规律性和奇异性形成
  • 批准号:
    1853001
  • 财政年份:
    2018
  • 资助金额:
    $ 40.42万
  • 项目类别:
    Continuing Grant
Regularity and Singularity Formation in Swarming and Related Fluid Models
集群及相关流体模型中的规律性和奇异性形成
  • 批准号:
    1815667
  • 财政年份:
    2018
  • 资助金额:
    $ 40.42万
  • 项目类别:
    Continuing Grant

相似国自然基金

“本地—非本地”理论视角下大都市中心体系的功能构成模式与相互作用机制研究:以上海为例
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
本地市场效应与服务贸易增长的内生动力研究:理论、机制与中国经验
  • 批准号:
    71603285
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
基于Nonlocal的MRI脑肿瘤图像分割方法的研究
  • 批准号:
    11426205
  • 批准年份:
    2014
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
基于虚拟化技术的非可信程序隔离运行环境研究
  • 批准号:
    61202480
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
结构信息约束的乳腺DCE-MRI药代动力学参数图和组织形变场的联合估计
  • 批准号:
    81101109
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Nonlocal and Anisotropic Partial Differential Equations in Mathematical Biology
数学生物学中的非局部和各向异性偏微分方程
  • 批准号:
    RGPIN-2017-04158
  • 财政年份:
    2021
  • 资助金额:
    $ 40.42万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlocal and Anisotropic Partial Differential Equations in Mathematical Biology
数学生物学中的非局部和各向异性偏微分方程
  • 批准号:
    RGPIN-2017-04158
  • 财政年份:
    2020
  • 资助金额:
    $ 40.42万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear and Nonlocal Partial Differential Equations
非线性和非局部偏微分方程
  • 批准号:
    1907221
  • 财政年份:
    2019
  • 资助金额:
    $ 40.42万
  • 项目类别:
    Standard Grant
CAREER: Nonlocal partial differential equations in collisional kinetic theory
职业:碰撞动力学理论中的非局部偏微分方程
  • 批准号:
    2019335
  • 财政年份:
    2019
  • 资助金额:
    $ 40.42万
  • 项目类别:
    Continuing Grant
Nonlocal and Anisotropic Partial Differential Equations in Mathematical Biology
数学生物学中的非局部和各向异性偏微分方程
  • 批准号:
    RGPIN-2017-04158
  • 财政年份:
    2019
  • 资助金额:
    $ 40.42万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了