Interacting Particle Systems and Mean-field games Workshops
交互粒子系统和平均场游戏研讨会
基本信息
- 批准号:2207572
- 负责人:
- 金额:$ 2.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-15 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will support participation of graduate students, post-doctoral researchers and early career researchers from the United States of America in one of the workshops "Interacting Particle Systems and Hydrodynamic Limits" to be held from March 13-27, 2022, or the "Mean-Field Games" workshop to be held from April 10-17, 2022 at the Centre de Recherches Mathematiques (CRM) in Montreal, Canada. Both workshops are part of a larger interdisciplinary thematic program on "Probabilities and PDEs" held at CRM from January to July 2022. Probability theory and the theory of partial differential equations (PDEs) are important areas of mathematics with substantial overlap in their methods and goals. In both fields, one of the major aims is to provide accurate models of how engineered, physical, chemical and biological systems change over time. Probability frequently focuses on how systems which are random and/or unpredictable at the microscopic level can become highly ordered at the macroscopic level. PDE theory frequently focuses on the spatial and temporal evolution of such macroscopic systems. For decades there has been a fruitful interplay between the two fields probability and PDEs, with both intuitions and mathematical techniques from each area finding application in the other. This project focuses on two aspects of that interplay, which are both related to how probabilistic particle systems resemble PDEs when sufficiently "zoomed out". One of these, the area of mean-field games, describes scaling limits of strategically controlled interacting agents evolving as diffusions coupled via a graph structure (often the complete graph). The second, interacting particle systems and hydrodynamic limits, typically focuses on PDE approximations for particle systems in more geometric settings, such as lattices (on taking an appropriate fine-mesh limit in both space and time). The goal of this project is to support the participation of US-based junior researchers and researchers from underrepresented groups in a thematic semester on Probability and PDEs (and in particular their participation in two workshops, on the subjects of mean-field games and interacting particle systems), taking place in the first half of 2022 at the Centre de Recherches Mathématiques in Montréal, Canada. The thematic semester website is maintained at http://www.crm.umontreal.ca/2022/Probab22/index_e.php the Interacting Particle Systems and Hydrodynamic Limits Workshop at http://www.crm.umontreal.ca/2022/Particules22/index_e.php and the Mean-Field Games Workshop at http://www.crm.umontreal.ca/2022/Games22/index_e.php.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将支持来自美国的研究生、博士后研究人员和早期职业研究人员参加将于 2022 年 3 月 13 日至 27 日举行的“相互作用粒子系统和流体动力学极限”研讨会之一,或“平均场游戏”研讨会将于 2022 年 4 月 10 日至 17 日在加拿大蒙特利尔数学研究中心 (CRM) 举行。这两个研讨会都是更大的跨学科研讨会的一部分2022 年 1 月至 7 月在 CRM 举办的“概率与偏微分方程”主题课程。概率论和偏微分方程 (PDE) 理论是数学的重要领域,在这两个领域中,它们的方法和目标有很大的重叠。概率论的主要目标是提供工程、物理、化学和生物系统如何随时间变化的准确模型,概率论经常关注微观层面上随机和/或不可预测的系统如何在宏观层面上变得高度有序。几十年来,概率论和偏微分方程这两个领域之间的相互作用经常集中在宏观系统的空间和时间演化上,每个领域的直觉和数学技术都在另一个领域得到了应用。这种相互作用的各个方面,都与概率粒子系统在充分“缩小”时如何类似于偏微分方程有关,其中之一是平均场博弈的区域,描述了策略控制的相互作用主体随着扩散耦合而演化的尺度限制。图结构(通常是完整的图)。第二个相互作用的粒子系统和流体动力学极限通常侧重于更多几何设置中的粒子系统的 PDE 近似,例如晶格(在空间和时间目标上采用适当的细网格极限)。该项目的目的是支持美国的初级研究人员和来自代表性不足群体的研究人员参与关于概率和偏微分方程的主题学期(特别是他们参加关于平均场博弈和相互作用粒子主题的两个研讨会)系统),将于 2022 年上半年在加拿大蒙特利尔数学研究中心举行。该学期的主题网站位于 http://www.crm.umontreal.ca/2022/Probab22/index_e.php。粒子系统和流体动力学极限研讨会,网址:http://www.crm.umontreal.ca/2022/Particules22/index_e.php 和平均场游戏研讨会,网址:http://www.crm.umontreal.ca/2022/Games22/index_e.php。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kavita Ramanan其他文献
A Mimicking Theorem for processes driven by fractional Brownian motion
分数布朗运动驱动过程的拟态定理
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kevin Hu;Kavita Ramanan;William Salkeld - 通讯作者:
William Salkeld
The $\ell_r$-Levy-Grothendieck problem and $r\rightarrow p$ norms of Levy matrices
$ell_r$-Levy-Grothendieck 问题和 Levy 矩阵的 $r
ightarrow p$ 范数
- DOI:
- 发表时间:
2024-04-28 - 期刊:
- 影响因子:0
- 作者:
Kavita Ramanan;Xiaoyu Xie - 通讯作者:
Xiaoyu Xie
Interacting stochastic processes on sparse random graphs
稀疏随机图上的交互随机过程
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Kavita Ramanan - 通讯作者:
Kavita Ramanan
Long-Time Limit of Nonlinearly Coupled Measure-Valued Equations that Model Many-Server Queues with Reneging
非线性耦合测值方程的长期限制,用于对多服务器队列进行重新更新建模
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:2
- 作者:
Rami Atar;W. Kang;H. Kaspi;Kavita Ramanan - 通讯作者:
Kavita Ramanan
On the large deviation rate function for marked sparse random graphs
关于有标记稀疏随机图的大偏差率函数
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Kavita Ramanan;S. Yasodharan - 通讯作者:
S. Yasodharan
Kavita Ramanan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kavita Ramanan', 18)}}的其他基金
Rare Events and High-Dimensional Stochastic Systems
稀有事件和高维随机系统
- 批准号:
2246838 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Analysis of High-Dimensional Stochastic Systems
高维随机系统分析
- 批准号:
1954351 - 财政年份:2020
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
2018 Stochastic Networks Conference and Summer School in Applied Probability
2018年随机网络会议暨应用概率暑期学校
- 批准号:
1822084 - 财政年份:2018
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
"High-dimensional random phenomena and rare events"
《高维随机现象和罕见事件》
- 批准号:
1713032 - 财政年份:2017
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
Women's Intellectual Networking Research Symposium
女性知识网络研究研讨会
- 批准号:
1727318 - 财政年份:2017
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Rigorous Approximations of Stochastic Network Dynamics, with Applications to Real-World Networks
随机网络动力学的严格近似及其在现实世界网络中的应用
- 批准号:
1538706 - 财政年份:2015
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Problems at the Interface of Stochastics and Analysis
随机学与分析的交叉问题
- 批准号:
1407504 - 财政年份:2014
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
Stability, Sensitivity and Optimization of Stochastic Systems
随机系统的稳定性、敏感性和优化
- 批准号:
1234100 - 财政年份:2012
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Travel Grant for the Applied Probability Society Conference
应用概率学会会议旅费补助金
- 批准号:
1114608 - 财政年份:2011
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Analysis of Large-Scale Stochastic Systems
大规模随机系统分析
- 批准号:
1052750 - 财政年份:2010
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
相似国自然基金
单粒子效应对基于纳米级异构多核SoC的卷积神经网络系统影响机理研究
- 批准号:12305303
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
磁有序系统的对称群与新型准粒子
- 批准号:12374166
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
激光增材制造粒子加速器真空系统复杂部件材料真空性能优化研究
- 批准号:12375321
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
无穷交互粒子系统的定量分析
- 批准号:12301166
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
格点和完全图上的交互粒子系统的流体动力学及相关
- 批准号:12371142
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
CAREER: Interacting Particle Systems and their Mean-Field PDEs: when nonlinear models meet data
职业:相互作用的粒子系统及其平均场偏微分方程:当非线性模型遇到数据时
- 批准号:
2340762 - 财政年份:2024
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
Understanding plasticity of metals through mean-field limits of stochastic interacting particle systems
通过随机相互作用粒子系统的平均场限制了解金属的可塑性
- 批准号:
24K06843 - 财政年份:2024
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
- 批准号:
2345533 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Interacting Particle Systems and Beyond
相互作用的粒子系统及其他
- 批准号:
2348756 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
- 批准号:
2206085 - 财政年份:2022
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant