CAREER: Dissipation Mechanisms and Damping in Smart Elastomers with Intermolecular Organization

职业:具有分子间组织的智能弹性体的耗散机制和阻尼

基本信息

  • 批准号:
    2238035
  • 负责人:
  • 金额:
    $ 58.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2028-07-31
  • 项目状态:
    未结题

项目摘要

Energy harvesting is a promising technology for numerous industrial applications. However, when converting energy into an easily stored form, significant amount of energy is lost due to dissipations. This Faculty Early Career Development (CAREER) award supports research on efficient dissipation of mechanical energy at low volume using smart elastomers. This project investigates internal movements in smart elastomers, such as liquid crystal elastomers (LCE), as new dissipation mechanisms that could significantly improve the performance of dampers. Understanding the deformation mechanisms of these LCEs will allow tailoring of the material properties to the desired application, such as energy harvesting, healthcare, and soft robotics. This research is integrated with a sustained educational and outreach activity aimed at developing a pipeline of girls and women in Mechanical Engineering, linking the results of the research program to soft robotics and coding initiation. Activities will focus on three objectives: introducing soft robotics, improving coding skills, and mentoring through research. These activities will increase women’s confidence, performance, and interest in pursuing an engineering career. The project’s goal is to understand the dissipation deformation mechanisms in smart elastomers with intermolecular organization to design highly efficient composite dampers. The fundamental understanding of the dissipation mechanisms originating from the coupling between mesogens and polymer chains will help a comprehensive macroscopic modeling approach for the thermoviscoelastic behavior of LCEs, opening the door to robust device designs. This investigation will be carried out using combined experimental and numerical methods at multiple scales to determine and model the dissipative deformation mechanisms, the curing kinetics, and the damping in a LCE composite. New experimental methods will be developed to map the organization of the microstructure in LCEs to the deformation using depolarized Raman spectroscopy and nuclear magnetic resonance relaxometry. Smoothed particle hydrodynamics (SPH) will be used to study the evolution of a self-organizing microstructure during deformation. Additionally, the interactions between curing kinetics, crosslink density, and microstructure ordering are primordial to accurately predict properties of additively manufactured LCEs. Additionally, the potential for LCE composites to exhibit extreme damping at low cost will be explored.This project is jointly funded by Mechanics of Materials (MoMS) program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
能源收集是众多工业应用的一种有前途的技术。但是,当将能量转换为易于存储的形式时,由于耗散而损失了大量能量。这项教师早期职业发展(职业)奖支持使用智能弹性体以低体积的机械能量耗散的研究。该项目调查了智能弹性体(例如液晶弹性体(LCE))中的内部运动,因为新的耗散机制可以显着改善阻尼器的性能。了解这些LCE的变形机制将允许将材料特性调整为所需的应用,例如能量收集,医疗保健和软机器人技术。这项研究与持续的教育和外展活动相结合,旨在开发机械工程领域的女孩和妇女的管道,将研究计划的结果与软机器人技术和编码计划联系起来。活动将集中在三个目标上:引入软机器人技术,提高编码技能以及通过研究的心理。这些活动将增加妇女对从事工程职业的信心,表现和兴趣。该项目的目标是了解具有分子间组织的智能弹性体的耗散变形机制,以设计高效的复合阻尼器。对耗散机制的基本理解来自中质和聚合物链之间的耦合,这将有助于对LCE的热电弹弹性进行全面的宏观建模方法,从而为强大的设备设计打开了大门。这项投资将使用多个量表的联合实验和数值方法进行,以确定和建模耗散变形机制,固化动力学和LCE复合材料中的阻尼。将开发新的实验方法,以使用已部署的拉曼光谱和核磁共振松弛将LCE中的微观结构绘制为变形。平滑的颗粒流体动力学(SPH)将用于研究变形过程中自组织微结构的演变。此外,固化动力学,交联密度和微观结构排序之间的相互作用是原始的,可以准确预测其他生产的LCE的特性。此外,将探索LCE复合材料以低成本表现出极端阻尼的潜力。该项目由材料机制(MOMS)计划和启发竞争性研究的既定计划共同资助(EPSCOR)。该奖项反映了NSF的法规任务,并以基础知识的优点和广泛的评论来评估,并以评估的支持是珍贵的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aurelie Azoug其他文献

Aurelie Azoug的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

非平衡动力学下热机的耗散机制以及最大输出功率的随机控制
  • 批准号:
    12302032
  • 批准年份:
    2023
  • 资助金额:
    10.00 万元
  • 项目类别:
    青年科学基金项目
压电/形状记忆协同增效阻尼复合材料的制备与能量耗散机制研究
  • 批准号:
    52373083
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
多酚功能化壳聚糖基组织粘合剂构建及其能量耗散机制探究
  • 批准号:
    82302389
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
干旱风沙区荒漠草原柠条灌草系统水分耗散特征及其密度调控机制
  • 批准号:
    32301504
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
石墨烯及其异质结材料的自旋弛豫和耗散性质及机制的第一性原理研究
  • 批准号:
    12304214
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Enhancing Seismic Resilience of Bridges by Using Novel Shape Memory Alloy (SMA) Devices Combined with Conventional Damping Mechanisms
使用新型形状记忆合金 (SMA) 器件结合传统阻尼机制增强桥梁的抗震能力
  • 批准号:
    20K14811
  • 财政年份:
    2020
  • 资助金额:
    $ 58.07万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Mechanisms Responsible for Mesoscale Eddy Energy Dissipation (MeRMEED)
负责中尺度涡流能量耗散的机制 (MeRMEED)
  • 批准号:
    NE/N001745/3
  • 财政年份:
    2019
  • 资助金额:
    $ 58.07万
  • 项目类别:
    Research Grant
Investigations on Energy Dissipation Mechanisms in Atomic Force Microscopy in Liquids
液体中原子力显微镜能量耗散机制的研究
  • 批准号:
    19H02598
  • 财政年份:
    2019
  • 资助金额:
    $ 58.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Novel mechanisms of strain energy dissipation in collagen polymers: their characterization, control, and application
胶原聚合物应变能耗散的新机制:其表征、控制和应用
  • 批准号:
    RGPIN-2014-04967
  • 财政年份:
    2019
  • 资助金额:
    $ 58.07万
  • 项目类别:
    Discovery Grants Program - Individual
Novel mechanisms of strain energy dissipation in collagen polymers: their characterization, control, and application
胶原聚合物应变能耗散的新机制:其表征、控制和应用
  • 批准号:
    RGPIN-2014-04967
  • 财政年份:
    2018
  • 资助金额:
    $ 58.07万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了