CAREER: Dissipation Mechanisms and Damping in Smart Elastomers with Intermolecular Organization
职业:具有分子间组织的智能弹性体的耗散机制和阻尼
基本信息
- 批准号:2238035
- 负责人:
- 金额:$ 58.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Energy harvesting is a promising technology for numerous industrial applications. However, when converting energy into an easily stored form, significant amount of energy is lost due to dissipations. This Faculty Early Career Development (CAREER) award supports research on efficient dissipation of mechanical energy at low volume using smart elastomers. This project investigates internal movements in smart elastomers, such as liquid crystal elastomers (LCE), as new dissipation mechanisms that could significantly improve the performance of dampers. Understanding the deformation mechanisms of these LCEs will allow tailoring of the material properties to the desired application, such as energy harvesting, healthcare, and soft robotics. This research is integrated with a sustained educational and outreach activity aimed at developing a pipeline of girls and women in Mechanical Engineering, linking the results of the research program to soft robotics and coding initiation. Activities will focus on three objectives: introducing soft robotics, improving coding skills, and mentoring through research. These activities will increase women’s confidence, performance, and interest in pursuing an engineering career. The project’s goal is to understand the dissipation deformation mechanisms in smart elastomers with intermolecular organization to design highly efficient composite dampers. The fundamental understanding of the dissipation mechanisms originating from the coupling between mesogens and polymer chains will help a comprehensive macroscopic modeling approach for the thermoviscoelastic behavior of LCEs, opening the door to robust device designs. This investigation will be carried out using combined experimental and numerical methods at multiple scales to determine and model the dissipative deformation mechanisms, the curing kinetics, and the damping in a LCE composite. New experimental methods will be developed to map the organization of the microstructure in LCEs to the deformation using depolarized Raman spectroscopy and nuclear magnetic resonance relaxometry. Smoothed particle hydrodynamics (SPH) will be used to study the evolution of a self-organizing microstructure during deformation. Additionally, the interactions between curing kinetics, crosslink density, and microstructure ordering are primordial to accurately predict properties of additively manufactured LCEs. Additionally, the potential for LCE composites to exhibit extreme damping at low cost will be explored.This project is jointly funded by Mechanics of Materials (MoMS) program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
能量收集对于许多工业应用来说是一项很有前景的技术,但是,当将能量转换为易于存储的形式时,会因耗散而损失大量能量。该学院早期职业发展(职业)奖支持对机械能的有效耗散的研究。使用智能弹性体的低体积。这将智能弹性体(例如液晶弹性体(LCE))的内部运动作为新的耗散机制,可以显着提高阻尼器的性能。这些 LCE 的变形机制将允许根据所需的应用定制材料特性,例如能量收集、医疗保健和软机器人。这项研究与旨在开发女孩和妇女管道的持续教育推广和活动相结合。机械工程,将研究计划的结果与软机器人技术和编码启动联系起来。活动将集中于三个目标:引入软机器人技术、提高编码技能以及通过研究进行指导。这些活动将提高女性的信心、表现和兴趣。一个该项目的目标是了解具有分子间组织的智能弹性体的耗散变形机制,以设计高效的复合材料阻尼器。对介晶和聚合物链之间耦合的耗散机制的基本理解将有助于全面的宏观建模方法。 LCE 的热粘弹性行为,为稳健的器件设计打开了大门。这项研究将使用多尺度的实验和数值相结合的方法来确定和模拟耗散。将开发新的实验方法,利用去极化拉曼光谱和核磁共振弛豫测量将 LCE 中的微观结构组织映射到变形。用于研究变形过程中自组织微观结构的演变此外,固化动力学、交联密度和微观结构排序之间的相互作用。此外,还将探索 LCE 复合材料以低成本表现出极端阻尼的潜力。该项目由材料力学(MoMS)计划和刺激竞争研究既定计划( EPSCoR)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aurelie Azoug其他文献
Aurelie Azoug的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于双网络结构演变与能量耗散规律解析凝结多糖对淀粉水凝胶热加工性的增稳机制
- 批准号:32302145
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
石墨烯及其异质结材料的自旋弛豫和耗散性质及机制的第一性原理研究
- 批准号:12304214
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
干旱风沙区荒漠草原柠条灌草系统水分耗散特征及其密度调控机制
- 批准号:32301504
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
压电/形状记忆协同增效阻尼复合材料的制备与能量耗散机制研究
- 批准号:52373083
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
含瓦斯构造煤损伤失稳的细观颗粒力学行为与能量耗散机制
- 批准号:52374243
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Enhancing Seismic Resilience of Bridges by Using Novel Shape Memory Alloy (SMA) Devices Combined with Conventional Damping Mechanisms
使用新型形状记忆合金 (SMA) 器件结合传统阻尼机制增强桥梁的抗震能力
- 批准号:
20K14811 - 财政年份:2020
- 资助金额:
$ 58.07万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mechanisms Responsible for Mesoscale Eddy Energy Dissipation (MeRMEED)
负责中尺度涡流能量耗散的机制 (MeRMEED)
- 批准号:
NE/N001745/3 - 财政年份:2019
- 资助金额:
$ 58.07万 - 项目类别:
Research Grant
Novel mechanisms of strain energy dissipation in collagen polymers: their characterization, control, and application
胶原聚合物应变能耗散的新机制:其表征、控制和应用
- 批准号:
RGPIN-2014-04967 - 财政年份:2019
- 资助金额:
$ 58.07万 - 项目类别:
Discovery Grants Program - Individual
Investigations on Energy Dissipation Mechanisms in Atomic Force Microscopy in Liquids
液体中原子力显微镜能量耗散机制的研究
- 批准号:
19H02598 - 财政年份:2019
- 资助金额:
$ 58.07万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Novel mechanisms of strain energy dissipation in collagen polymers: their characterization, control, and application
胶原聚合物应变能耗散的新机制:其表征、控制和应用
- 批准号:
RGPIN-2014-04967 - 财政年份:2018
- 资助金额:
$ 58.07万 - 项目类别:
Discovery Grants Program - Individual