CAREER: Electro-Chemo-Mechanics of Multiscale Active Materials for Next-Generation Energy Storage
职业:用于下一代储能的多尺度活性材料的电化学力学
基本信息
- 批准号:2237990
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) grant will support integrated research, education, and outreach efforts to advance the field of mechanics for energy storage materials. In modern society, rechargeable batteries dominate the energy storage landscape, from portable electronics to electric vehicles. However, current microparticle-based battery technologies are insufficient for efficient, affordable, and safe energy storage. Advances in nanotechnology have spurred interest in deploying nanoparticles as battery electrodes. However, there are problems associated with nanoparticles that need to be overcome before the battery industry would use them over microparticles. A way forward lies in utilizing multiscale active materials to leverage the advantages of both worlds (micro and nano). The goal of this research is to gain fundamental knowledge of the interrelated electrical, chemical, and mechanical behaviors of multiscale active materials. These materials incorporate microscale particles with built-in nanoscale features. This project will develop an integrated atomistic simulation and machine learning framework to discover the optimal multiscale active materials for next-generation energy storage, which is urgently needed to advance the US economy, prosperity, welfare, and defense. The integrated outreach and educational activities will provide research opportunities for underrepresented community college students in partnership with the Louis Stokes Alliances for Minority Participation program. Workshops for elementary teacher trainees will provide STEM content to promote science among lower-grade students. Additionally, free online workshops related to this research will benefit the worldwide mechanics research community. Nanomaterials-based battery electrodes offer several advantages: high rate, power density, gravimetric capacity, superior fracture toughness, and fatigue resistance. However, the industry has been resistant to replace microstructured electrodes with nanostructured counterparts. Nanomaterials-based batteries have low volumetric capacity, reduced coulombic efficiency, and high cost. The transformative solution to address this issue lies in multiscale active materials. These materials can be either engineered (assembly of nanoparticles into microparticles) or natural (micrometer-scale materials naturally endowed with nanoscale tunnels). However, various computational and experimental challenges have impeded research progress in this area. This project aims to overcome these challenges through four integrated objectives: (i) studying the interfacial mechanics in engineered multiscale materials, (ii) determining electrode/electrolyte stability and solid electrolyte interface formation, (iii) investigating stress, fracture, and voltage variation within electrodes during charge/discharge cycles, and (iv) utilizing data from the first three objectives to train recently developed Modified High Dimensional Neural Networks for novel multiscale materials exploration. The Non-Local Long-Range Charge Transfer will be implemented for accurate charge calculation and correct force and stress analysis. Tasks will be experimentally validated with colleagues. The project will generate fundamental knowledge to advance the field of mechanics of energy storage materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项教师早期职业发展(职业)赠款将支持综合的研究,教育和外展工作,以推动储能材料的力学领域。在现代社会中,可充电电池主导着储能景观,从便携式电子设备到电动汽车。但是,当前基于微粒的电池技术不足以实现有效,负担得起和安全的能源存储。纳米技术的进步激发了将纳米颗粒作为电池电极部署的兴趣。但是,与纳米颗粒相关的问题需要克服,在电池行业将它们在微粒上使用。前进的道路在于利用多尺度活动材料来利用两者的优势(Micro和Nano)。这项研究的目的是获得多尺度活动材料的相互关联的电气,化学和机械行为的基本知识。这些材料结合了具有内置纳米级特征的显微镜颗粒。该项目将开发一个集成的原子模拟和机器学习框架,以发现最佳的多尺度活动材料,用于下一代储能,这迫切需要促进美国经济,繁荣,福利和国防。综合的外展和教育活动将为代表性不足的社区大学生提供研究机会,与路易斯·斯托克斯联盟(Louis Stokes)联盟合作,以供少数群体参与计划。小学教师学员的讲习班将提供STEM内容,以促进低年级学生的科学。此外,与这项研究相关的免费在线研讨会将使全球机械研究社区受益。 基于纳米材料的电池电极具有多种优势:高速率,功率密度,重量量,优质断裂韧性和抗疲劳性。但是,该行业可以用纳米结构的对应物替代微结构电极。基于纳米材料的电池容量较低,库仑效率降低和高成本。解决此问题的变革解决方案在于多尺度活动材料。这些材料可以进行工程(将纳米颗粒组装到微粒中)或天然(微米尺度的材料自然都具有纳米级隧道)。但是,各种计算和实验挑战阻碍了该领域的研究进步。 This project aims to overcome these challenges through four integrated objectives: (i) studying the interfacial mechanics in engineered multiscale materials, (ii) determining electrode/electrolyte stability and solid electrolyte interface formation, (iii) investigating stress, fracture, and voltage variation within electrodes during charge/discharge cycles, and (iv) utilizing data from the first three objectives to train recently developed Modified High Dimensional Neural新型多尺度探索的网络。非本地远程电荷转移将实施,以进行准确的电荷计算以及正确的力和应力分析。任务将通过同事在实验上进行验证。该项目将产生基本知识,以推进储能材料的力学领域。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响审查标准来评估值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exploring Thermal Transport in Electrochemical Energy Storage Systems Utilizing Two-Dimensional Materials: Prospects and Hurdles
- DOI:10.1615/annualrevheattransfer.2023049365
- 发表时间:2023-09
- 期刊:
- 影响因子:0
- 作者:Dibakar Datta;Eon Soo Lee
- 通讯作者:Dibakar Datta;Eon Soo Lee
Unlocking the Potential of Open-Tunnel Oxides: DFT-Guided Design and Machine Learning-Enhanced Discovery for Next- Generation Industry-Scale Battery Technologies
释放开放式隧道氧化物的潜力:DFT 引导设计和机器学习增强发现下一代工业规模电池技术
- DOI:10.1039/d4ya00014e
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Datta, Joy;Koratkar, Nikhil;Datta, Dibakar
- 通讯作者:Datta, Dibakar
Effects of Graphene Interface on Potassiation in a Graphene–Selenium Heterostructure Cathode for Potassium-Ion Batteries
- DOI:10.1021/acsaem.3c00989
- 发表时间:2023-04
- 期刊:
- 影响因子:6.4
- 作者:Vidushi Sharma;D. Datta
- 通讯作者:Vidushi Sharma;D. Datta
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dibakar Datta其他文献
Mechanical properties of graphene grain boundary and hexagonal boron nitride lateral heterostructure with controlled domain size
可控畴尺寸的石墨烯晶界和六方氮化硼横向异质结构的力学性能
- DOI:
10.1016/j.commatsci.2016.06.026 - 发表时间:
2017 - 期刊:
- 影响因子:3.3
- 作者:
Anran Wei;Yinfeng Li;Dibakar Datta;Hui Guo;Ziang Lv - 通讯作者:
Ziang Lv
Nano-silica electrolyte additive enables dendrite suppression in an anode-free sodium metal battery
- DOI:
10.1016/j.nanoen.2024.110010 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:
- 作者:
Reena A. Panchal;Joy Datta;Vrushali Varude;Kevin Bhimani;Varad Mahajani;Mithil Kamble;Apurva Anjan;Rohit M. Manoj;R. Helen Zha;Dibakar Datta;Nikhil Koratkar - 通讯作者:
Nikhil Koratkar
Thermal characteristics of graphene nanoribbons endorsed by surface functionalization
表面功能化支持的石墨烯纳米带的热特性
- DOI:
10.1016/j.carbon.2016.11.067 - 发表时间:
2017-03 - 期刊:
- 影响因子:10.9
- 作者:
Yinfeng Li;Anran Wei;Dibakar Datta - 通讯作者:
Dibakar Datta
Dibakar Datta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dibakar Datta', 18)}}的其他基金
Collaborative Research: Fundamental Study of Niobium Tungsten Oxide Anodes for High-Performance Aqueous Batteries
合作研究:高性能水系电池用铌钨氧化物阳极的基础研究
- 批准号:
2126180 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Roll-to-Roll Atomic Layer Deposition of Selenium-based Battery Cathodes
GOALI/合作研究:硒基电池阴极的卷对卷原子层沉积
- 批准号:
1911900 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
锡(铋、铟)氧/硫化物在CO2电还原过程中的重构行为与催化机制研究
- 批准号:52372217
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
反常HfO2基铁电薄膜微束离子精准调控亚稳相的研究
- 批准号:52302151
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向安全稳定生产的风电智能预测预警机制研究
- 批准号:62366039
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
空间导电滑环滑动电接触磨损机制与预测研究
- 批准号:52305180
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
分布式电驱动智能车辆主动交互机理及控制机制研究
- 批准号:52372377
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
CAREER: Electro-Chemo-Mechanics of Li and Na Metal: Toward Dendrite- and Damage-Free Metallic Anodes of Rechargeable Batteries
职业:锂和钠金属的电化学力学:研究可充电电池的无枝晶和无损伤金属阳极
- 批准号:
1944674 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Nano Electro-chemo-mechanics and Interfacial Stability in All-solid-state Lithium Battery
职业:全固态锂电池中的纳米电化学力学和界面稳定性
- 批准号:
1942554 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Electro-Chemo-Mechanics of Polymer/Active Material Interface Fracture
职业:聚合物/活性材料界面断裂的电化学力学
- 批准号:
2026717 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: The Role of Heterogeneities in Electro-Chemo-Mechanics of Electrodes and Interfaces
职业:异质性在电极和界面电化学力学中的作用
- 批准号:
1943946 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Electro-Chemo-Mechanics of Polymer/Active Material Interface Fracture
职业:聚合物/活性材料界面断裂的电化学力学
- 批准号:
1652409 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant