CAREER: Understanding and Harnessing the Dynamics of Complex Fluid-Structure Interactions
职业:理解和利用复杂流固相互作用的动力学
基本信息
- 批准号:2237542
- 负责人:
- 金额:$ 60.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2027-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Fluid-structure interaction describes the effects of fluid dynamic forces upon flexible structures – such as wings, bridges, or ship hulls – and vice versa. Prediction, modeling, and monitoring of fluid-structure interactions are necessary capabilities for avoiding fluid-induced failures in engineered systems critical to transportation and infrastructure. At the same time, targeted structural vibration holds promise as a method of flow-control, with applications that include improved stall resistance of aircraft wings or drag reduction on bluff-bodies such as tractor trailers or large maritime vessels. Current experimental methods do not paint a complete picture of the potential hazards or the realizable benefits of fluid-structure interaction. The principal aim of this research is a deeper and more actionable understanding of the mutual effects of flexible structures and fluids upon one another, and how those effects can be leveraged for improved safety and performance. The research also encourages and thrives upon the collaborative involvement of both graduate and undergraduate research assistants, with pipelines for paid assistantships, class projects, and student outreach initiatives on campus and at a rural high school.The proposed research contributes toward a paradigm shift in the way that experiments in fluid-structure interactions are performed and leveraged for smarter, safer, and more efficient design, modeling, and monitoring. Specifically, the planned approach will (1) produce new workflows for quantifying spatial fluid loads on flexible bodies; (2) deduce previously unrecognized causal links between fluid flow structures and fluid-structure dynamics; (3) quantify the efficacy of structural vibration in controlling turbulent flow separation; (4) generate a large and well-documented experimental database for use by other researchers; and (5) evaluate the use of blended didactic-experiential learning for improving student competency in the topic of fluid-structure interactions. Spatial models of fluid loading will be developed through systematic experimentation on submerged structures, using novel full-field deformation sensing. The study will utilize particle tracking velocimetry of flow over canonical vibrating profiles to assess the effects of structural resonances upon flow separation and reattachment. Open-access educational modules will be developed and piloted in existing undergraduate courses to introduce engineering students to fluid-structure interactions through hands-on experimentation. This work will produce generalizable physical insights that improve the safety and efficiency of aerospace, civil, and maritime systems. Moreover, by making such research more accessible to engineering students, this work facilitates awareness of fluid-structure interactions across engineering disciplines, helping future engineers produce smarter, safer, and more efficient designs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
流体结构相互作用描述了流体动力学对柔性结构(例如机翼,桥梁或船舶)的影响,反之亦然。对流体结构相互作用的预测,建模和监测是避免流体诱导的工程系统失败的必要功能,这对于运输和基础设施至关重要。同时,有针对性的结构振动有望作为一种流动控制方法,其中包括提高飞机机翼的摊位阻力或在悬崖体体上的阻力减少,例如拖拉机拖车或大型婚姻视频。当前的实验方法并未描绘出流体结构相互作用的潜在危害或可实现的好处。这项研究的主要目的是对柔性结构和流体对彼此的相互影响的更深入,更可行的理解,以及如何利用这些影响以提高安全性和性能。 The research also encourages and thrives upon the collaborative involvement of both graduate and undergraduate research assistants, with pipelines for paid assistantships, class projects, and student outreach initiatives on campus and at a rough high school.The proposed research contributes towards a paradigm shift in the way that experiments in fluid-structure interactions are performed and leveraged for smarter, safer, and more efficient design, modeling, and monitoring.具体而言,计划的方法将(1)产生新的工作流程,以量化柔性身体上的空间流体载荷; (2)推断出流体流结构和流体结构动力学之间以前未被认可的催化剂; (3)量化结构振动在控制湍流分离中的效率; (4)生成一个大型且有据可查的实验数据库,以供其他研究人员使用; (5)评估混合说的实验性学习的使用来提高学生在流体结构相互作用主题中的能力。流体负荷的空间模型将通过使用新型的全场变形传感器对淹没结构进行系统的实验来开发。该研究将利用粒子跟踪流的质量计,超过规范振动曲线,以评估结构共振对流动分离和保留的影响。将在现有的本科课程中开发和试用开放式教育模块,以通过动手实验将工程学生介绍到流体结构的互动中。这项工作将产生可概括的物理见解,以提高航空航天,民用和海上系统的安全性和效率。此外,通过使工程专业的学生更容易访问此类研究,该工作设施意识到了跨工程学科的流体结构互动的意识,帮助未来的工程师生产更智能,更安全和更有效的设计。该奖项反映了NSF的法定任务,并通过使用该基金会的智力功能和广泛的影响来评估NSF的法定任务。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Casey Harwood其他文献
Novel experiments on the dynamics of amphibious craft during surf zone transit
- DOI:10.1016/j.oceaneng.2023.11616510.1016/j.oceaneng.2023.116165
- 发表时间:2023-12-012023-12-01
- 期刊:
- 影响因子:
- 作者:Michael Swafford;Casey HarwoodMichael Swafford;Casey Harwood
- 通讯作者:Casey HarwoodCasey Harwood
Enhancing control of air bubbles in water flows through laser-based surface wettability patterning
通过基于激光的表面润湿性图案增强对水流中气泡的控制
- DOI:
- 发表时间:20232023
- 期刊:
- 影响因子:2.1
- 作者:Ryan Mullennex;Wuji Huang;Casey Harwood;James H. J. Buchholz;Hongtao DingRyan Mullennex;Wuji Huang;Casey Harwood;James H. J. Buchholz;Hongtao Ding
- 通讯作者:Hongtao DingHongtao Ding
共 2 条
- 1
相似国自然基金
利用规整结构纳米晶催化剂在分子层次理解光催化甲醇制甲醛反应机理
- 批准号:52261135636
- 批准年份:2022
- 资助金额:150.00 万元
- 项目类别:国际(地区)合作与交流项目
利用多源大地测量数据定量研究青藏高原东北缘地壳隆升及其机理解释
- 批准号:42204006
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
番茄高抗颈腐根腐病基因Frl的克隆、抗病机理解析与育种利用
- 批准号:32272740
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
番茄高抗颈腐根腐病基因Frl的克隆、抗病机理解析与育种利用
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
利用多源大地测量数据定量研究青藏高原东北缘地壳隆升及其机理解释
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
食物の生体利用効率の個人差理解に向けた運動習慣と消化吸収能に関する研究
研究运动习惯和消化吸收能力,了解食物生物利用度的个体差异
- 批准号:24K1448324K14483
- 财政年份:2024
- 资助金额:$ 60.47万$ 60.47万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
縄文時代の森林資源の管理と利用に含まれる多様な植物の解明
阐明绳文时代参与森林资源管理和利用的多种植物
- 批准号:23K2053423K20534
- 财政年份:2024
- 资助金额:$ 60.47万$ 60.47万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
送粉系の地理的モザイクを利用した花の多様化メカニズムの解明
利用授粉系统的地理镶嵌阐明花卉多样化的机制
- 批准号:24KJ096224KJ0962
- 财政年份:2024
- 资助金额:$ 60.47万$ 60.47万
- 项目类别:Grant-in-Aid for JSPS FellowsGrant-in-Aid for JSPS Fellows
生物種分布推定モデル応用による世界の水利施設の地理的分布決定要因の解明と将来予測
阐明世界各地供水设施地理分布的决定因素并通过应用物种分布估计模型预测未来
- 批准号:23K2287423K22874
- 财政年份:2024
- 资助金额:$ 60.47万$ 60.47万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
計算化学を利活用したVariexenol生合成の反応制御機構の解析と合理的改変
计算化学对Variexenol生物合成反应控制机制的分析与合理修改
- 批准号:24K0162624K01626
- 财政年份:2024
- 资助金额:$ 60.47万$ 60.47万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)