CIF: Small: RUI: Highly Nonlinear and Pseudorandom Structures for Communications and Sensing

CIF:小:RUI:用于通信和传感的高度非线性和伪随机结构

基本信息

  • 批准号:
    2206454
  • 负责人:
  • 金额:
    $ 39.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

This project considers the creation and analysis of structures that are of fundamental and wide importance in information theory, including communications, sensing, and information security. Protocols for communications networks and ranging systems (radar, sonar, and navigation) require families of sequences, which are typically words composed of the symbols 0 and 1, and which must be as uncorrelated as possible. That is, the sequences should not resemble time-delayed versions of each other, nor even of themselves. Lack of resemblance between a sequence and delayed versions of itself aids in synchronization and timing, which is useful in ranging. Lack of resemblance between two different sequences (and their time-delayed versions) prevents confusion between different users in communications networks. Random sequences are difficult to use and have occasional coincidental resemblances, so it is better to use sequences that appear random but actually have a deep underlying structure. These are called pseudorandom sequences, and many of them are related to other objects, called Boolean functions, that are significant in cryptography. Here the deep structure allows efficient encryption and decryption, but the apparent randomness avoids easily detectable patterns that could be exploited to break the code. These pseudorandom structures find further applications in error-correcting codes, antenna arrays, scientific instrumentation, and acoustic design, so understanding them is of scientific and technological importance. This project is an investigation into these sequences and functions and, at the same time, an opportunity for students to participate in research that will prepare them for further studies and work in computing, engineering, scientific, and mathematical fields.The goal of this project is to discover and investigate sequences, Boolean functions, and related mathematical structures of significance in information theory. This project will investigate correlation spectra of families of sequences, especially with regard to properties that determine how well they can perform in communications and remote sensing applications. This project will also study Boolean functions and their relatives, especially the simplest ones like finite field power maps, which are often employed as cryptographic primitives. Special attention will be paid to Walsh spectra, which determine the nonlinearity of Boolean functions, and thus their resilience to linear cryptanalytic attack. This will be augmented by a study of the differential spectra of Boolean functions, which determine their resistance to differential cryptanalysis. In each case, the goal is to understand better the sequences and Boolean functions that are already known, and to guide the search for new examples with superior performance. The project will involve both empirical investigation (calculation of correlation, Walsh, and differential spectra to determine performance) and theoretical analysis, which in turn provides guidance for where to look next.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目考虑了在信息论中具有基础性和广泛重要性的结构的创建和分析,包括通信、传感和信息安全。 通信网络和测距系统(雷达、声纳和导航)的协议需要序列族,这些序列通常是由符号 0 和 1 组成的单词,并且必须尽可能不相关。 也就是说,这些序列不应与彼此的延时版本相似,甚至也不应与它们本身相似。 序列和其自身的延迟版本之间缺乏相似性有助于同步和定时,这在测距中很有用。 两个不同序列(及其延时版本)之间缺乏相似性,可以防止通信网络中不同用户之间的混淆。 随机序列很难使用,并且偶尔会有巧合的相似性,因此最好使用看似随机但实际上具有深层底层结构的序列。 这些被称为伪随机序列,其中许多与其他对象相关,称为布尔函数,这在密码学中很重要。 这里的深层结构允许有效的加密和解密,但明显的随机性避免了容易检测到的可被用来破解代码的模式。 这些伪随机结构在纠错码、天线阵列、科学仪器和声学设计中找到了进一步的应用,因此了解它们具有科学和技术上的重要性。 该项目是对这些序列和函数的调查,同时为学生提供了参与研究的机会,为他们在计算、工程、科学和数学领域的进一步学习和工作做好准备。该项目的目标是发现和研究信息论中重要的序列、布尔函数和相关数学结构。 该项目将研究序列族的相关谱,特别是决定它们在通信和遥感应用中表现如何的特性。 该项目还将研究布尔函数及其相关函数,特别是最简单的函数,例如有限场功率图,它们通常用作密码原语。我们将特别关注沃尔什谱,它决定了布尔函数的非线性,从而决定了它们对线性密码分析攻击的弹性。 对布尔函数的微分谱的研究将增强这一点,这决定了它们对微分密码分析的抵抗力。 在每种情况下,目标都是更好地理解已知的序列和布尔函数,并指导搜索具有卓越性能的新示例。 该项目将涉及实证研究(计算相关性、沃尔什和微分谱以确定性能)和理论分析,从而为下一步研究提供指导。该奖项反映了 NSF 的法定使命,并被认为值得通过以下方式获得支持:使用基金会的智力价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Katz其他文献

Ezra Pound’s Provincial Provence: Arnaut Daniel, Gavin Douglas, and the Vulgar Tongue
埃兹拉·庞德的普罗旺斯省:阿诺特·丹尼尔、加文·道格拉斯和粗俗的舌头
  • DOI:
    10.1215/00267929-1589167
  • 发表时间:
    2012-06-01
  • 期刊:
  • 影响因子:
    0.4
  • 作者:
    Daniel Katz
  • 通讯作者:
    Daniel Katz
Utilization of virtual reality for operating room fire safety training: a randomized trial
利用虚拟现实进行手术室消防安全培训:一项随机试验
  • DOI:
    10.1007/s10055-023-00866-0
  • 发表时间:
    2023-10-17
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Daniel Katz;Benjamin Hyers;Stephanie Hojsak;Da Wi Shin;Zhi;Chang Park;G. Burnett
  • 通讯作者:
    G. Burnett
Influence of Increasing Age and Body Mass Index of Gender in COVID-19 Patients.
年龄和性别体重指数增加对 COVID-19 患者的影响。
  • DOI:
    10.1089/jwh.2021.0615
  • 发表时间:
    2022-06-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. H. Mufarrih;Nada Q Qureshi;R. Yunus;D. Ngo;Daniel Katz;D. Krakower;Victoria M. Bhambhani;J
  • 通讯作者:
    J
The role of viscoelastic hemostatic assays for postpartum hemorrhage management and bedside intrapartum care.
粘弹性止血测定在产后出血管理和床旁产时护理中的作用。
  • DOI:
    10.1016/j.ajog.2022.09.008
  • 发表时间:
    2023-08-01
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Daniel Katz;M. Farber;C. Getrajdman;J. Hamburger;S. Reale;A. Butwick
  • 通讯作者:
    A. Butwick
Teaching Instrumental Analysis during the Pandemic: Application of Handheld CO2 Monitors to Explore COVID-19 Transmission Risks
大流行期间的仪器分析教学:应用手持式 CO2 监测仪探索 COVID-19 传播风险
  • DOI:
    10.1021/acs.jchemed.1c01154
  • 发表时间:
    2022-03-07
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Andrew Jensen;Niamh Brown;Nathalie Kosacki;Sara Spacek;Ale;er Bradley;er;Daniel Katz;J. L. Jimenez;J. D. de Gouw
  • 通讯作者:
    J. D. de Gouw

Daniel Katz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Katz', 18)}}的其他基金

Collaborative Research: Sustainability: A Community-Centered Approach for Supporting and Sustaining Parsl
合作研究:可持续性:以社区为中心的支持和维持 Parsl 的方法
  • 批准号:
    2209920
  • 财政年份:
    2022
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Characterizing Research Software from NSF Awards
协作研究:EAGER:获得 NSF 奖项的研究软件特征
  • 批准号:
    2211279
  • 财政年份:
    2022
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: funcX: A Function Execution Service for Portability and Performance
协作研究:框架:funcX:可移植性和性能的函数执行服务
  • 批准号:
    2004932
  • 财政年份:
    2020
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Small: Efficient and Policy-driven Burst Buffer Sharing
合作研究:OAC Core:小型:高效且策略驱动的突发缓冲区共享
  • 批准号:
    2008286
  • 财政年份:
    2020
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Standard Grant
CIF: Small: RUI: Low Correlation and Highly Nonlinear Structures for Communications and Sensing
CIF:小型:RUI:用于通信和传感的低相关性和高度非线性结构
  • 批准号:
    1815487
  • 财政年份:
    2018
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Standard Grant
REU Site: INCLUSION - Incubating a New Community of Leaders Using Software, Inclusion, Innovation, Interdisciplinary and OpeN-Science
REU 网站:包容性 - 利用软件、包容性、创新、跨学科和开放科学孵化新的领导者社区
  • 批准号:
    1659702
  • 财政年份:
    2017
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Standard Grant
Kansas-Missouri-Nebraska Commutative Algebra Conference (KUMUNU 2016)
堪萨斯州-密苏里州-内布拉斯加州交换代数会议 (KUMUNU 2016)
  • 批准号:
    1645050
  • 财政年份:
    2016
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Standard Grant
The 4th Workshop on Sustainable Software for Science: Best Practices and Experiences (WSSSPE4)
第四届科学可持续软件研讨会:最佳实践和经验(WSSSPE4)
  • 批准号:
    1648293
  • 财政年份:
    2016
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Standard Grant
Promoting Action to Build Research Communities in the Age of Open Science
促进开放科学时代建设研究社区的行动
  • 批准号:
    1645571
  • 财政年份:
    2016
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Standard Grant
RUI: Extremal Combinatorics of Patterns, Correlation, and Structure
RUI:模式、相关性和结构的极值组合
  • 批准号:
    1500856
  • 财政年份:
    2015
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Standard Grant

相似国自然基金

ALKBH5介导的SOCS3-m6A去甲基化修饰在颅脑损伤后小胶质细胞炎性激活中的调控作用及机制研究
  • 批准号:
    82301557
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
miRNA前体小肽miPEP在葡萄低温胁迫抗性中的功能研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
PKM2苏木化修饰调节非小细胞肺癌起始细胞介导的耐药生态位的机制研究
  • 批准号:
    82372852
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于翻译组学理论探究LncRNA H19编码多肽PELRM促进小胶质细胞活化介导电针巨刺改善膝关节术后疼痛的机制研究
  • 批准号:
    82305399
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CLDN6高表达肿瘤细胞亚群在非小细胞肺癌ICB治疗抗性形成中的作用及机制研究
  • 批准号:
    82373364
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

CIF: Small: RUI: Low Correlation and Highly Nonlinear Structures for Communications and Sensing
CIF:小型:RUI:用于通信和传感的低相关性和高度非线性结构
  • 批准号:
    1815487
  • 财政年份:
    2018
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Standard Grant
CIF: SMALL: RUI: Novel Detection Approaches with Comprehensive Hybrid Intelligent Systems for Multimedia Forensics
CIF:SMALL:RUI:用于多媒体取证的综合混合智能系统的新颖检测方法
  • 批准号:
    1318688
  • 财政年份:
    2014
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Standard Grant
CIF:Small:RUI: Mathematical Problems in Space-Time Block Codes for MIMO Systems
CIF:Small:RUI:MIMO 系统空时分组码的数学问题
  • 批准号:
    1318260
  • 财政年份:
    2013
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Standard Grant
CIF: Small: RUI: Multiple-Antenna Systems in Spatially Distributed Networks with Non-Idealized Assumptions
CIF:小型:RUI:具有非理想化假设的空间分布式网络中的多天线系统
  • 批准号:
    1117218
  • 财政年份:
    2011
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Standard Grant
CIF: Small: RUI: Fixation-Driven Contour Integration of Natural Images for Early Visual Processing
CIF:小:RUI:用于早期视觉处理的自然图像的注视驱动轮廓集成
  • 批准号:
    1117439
  • 财政年份:
    2011
  • 资助金额:
    $ 39.74万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了