CAREER: Understanding Nanoscale Radiative Transport in Multi-Body Systems

职业:了解多体系统中的纳米级辐射传输

基本信息

  • 批准号:
    2237003
  • 负责人:
  • 金额:
    $ 62.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

Thermal management of nanodevices requires a solid understanding of radiative heat transfer in reduced dimensions. To date, experiments involving radiative heat transfer have been limited by a focus on two-body systems. This CAREER program will explore the potential of systems containing more than two objects (i.e., multi-body systems) to lead to new physical and transport behaviors and, as a result, enable new applications in domains of national importance such as aerospace electronics, energy conversion technology, and information processing. To create these new technologies, it is essential to experimentally study and understand nanoscale radiative heat transfer between multiple objects and explore its use for improving heat exchange and thermal control. Thus, a primary outcome of this research will be a novel technique that enables the study of nanoscale radiative heat transfer among multiple objects. In addition to providing the fundamental knowledge necessary to advance thermal control at the nanoscale, this program will implement an innovative educational platform that promotes practical workforce development in academia by bridging the gap between academic work and industrial problems and stimulates curiosity among K-12 students in exploring engineering careers. This CAREER program will apply the physics of radiative transport in multi-bodies to solve thermal control problems in nanodevices. Specifically, this research will experimentally uncover the governing physics that drive electromagnetic waves-matter interactions in multi-body systems to identify the contributing factors in near-field radiative heat transfer (NFRHT). This work will provide new knowledge critical to the development of next-generation nanodevices by: (1) understanding the effect of structural factors on NFRHT in multi-bodies and (2) elucidating the role of multi-body physics in NFRHT for active thermal management. Significant structural and material factors in the spatial confinement of evanescent photons between multi-bodies will be identified through precision heat transfer measurements. Findings will provide in-depth understanding on how multiple interactive objects within micro/nano-dimensions impact radiative transport mechanisms—knowledge that will have far-reaching implications for advancing the thermal management of state-of-the-art high-power systems in industrial and technological applications. This research is integrated with education objectives to: (1) create an Academic-Industry Bridge (AIB) initiative for undergraduate and graduate students and (2) extend the AIB initiative to include an interactive platform for hands-on research projects for K- 12 students. Collaborations with Navajo Technical University and the University of Texas Rio Grande Valley will ensure engagement with diverse audiences.This project is jointly funded by the Thermal Transport Processes Program in the Chemical, Bioengineering, Environmental and Transport Systems (CBE) Division of the Engineering Directorate, and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
纳米版的热管理需要对降低尺寸的辐射传热有牢固的了解。迄今为止,涉及辐射传热的实验已受到两体系统的重点限制。该职业计划将探索包含两个以上对象(即多体系统)的系统的潜力,以导致新的物理和运输行为,从而在国家重要性的领域中实现新应用,例如航空航天电子,能源转换技术和信息处理。为了创建这些新技术,必须实验研究和了解多个物体之间的纳米级辐射热传递,并探索其用于改善热交换和热控制的用途。这是这项研究的主要结果将是一种新型技术,可以研究多个物体之间的纳米级辐射热传递。除了提供在纳米级进行热控制所必需的基本知识之外,该计划还将实施一个创新的教育平台,该平台通过弥合学术工作与工业问题之间的差距,并激发K-12学生在探索工程生涯中的好奇心,从而促进学术界的实践劳动力发展。该职业计划将在多体型中应用辐射运输的物理,以解决纳米版的热控制问题。具体而言,这项研究将在实验中揭示驱动多体系统中电磁波相互作用的治理物理学,以识别近场辐射传热(NFRHT)中的促成因素。这项工作将为下一代纳米版本的发展提供至关重要的新知识:(1)理解结构因子对多体体体内NFRHT的影响,以及(2)阐明多体物理学在NFRHT中对主动热管理的作用。将通过精确的传热测量来识别多体之间均匀照片的空间限制中的重要结构和物质因素。调查结果将对微/纳米二维中的多个交互对象有深入的了解影响辐射运输机制,这将对推进最先进的工业和技术应用中最先进的高功率系统的热管理具有深远的影响。这项研究与教育目标相结合:(1)为本科生和研究生创建一个学术行业桥(AIB)计划,(2)扩展AIB计划,包括一个用于K-12学生动手研究项目的交互式平台。与纳瓦霍技术大学和德克萨斯大学里奥格兰德大学的合作将确保与潜水员的受众互动。该项目由化学,生物工程,环境和运输系统(CBE)工程局的热运输流程计划共同资助,以及启发竞争性研究的既定计划(EPSCOR)。该奖项反映了NSF的法定任务,并认为通过基金会的知识优点和广泛的影响,通过评估来获得评估,以此为宝贵。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mohammad Ghashami其他文献

Mohammad Ghashami的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

复杂场景下的视频内容增强与理解研究
  • 批准号:
    62372036
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
SlCNR8调控番茄植株衰老的机理解析
  • 批准号:
    32360766
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
多粒度跨模态信息驱动融合的意图理解及其情感机器人场景应用研究
  • 批准号:
    62373334
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于直觉物理的常识理解、事件预测与环境干预
  • 批准号:
    62376009
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
腈水解酶的催化杂泛性机理解析及其在S-2,2-二甲基环丙烷甲酰胺合成中的应用
  • 批准号:
    22308332
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Understanding and controlling the sintering of metal powders with nanoscale additives
职业:了解和控制纳米级添加剂金属粉末的烧结
  • 批准号:
    2340688
  • 财政年份:
    2024
  • 资助金额:
    $ 62.97万
  • 项目类别:
    Continuing Grant
CAREER: Mechanistic understanding of the nanoscale interactions of structurally tunable 3D assemblies of MXenes-polyelectrolytes
职业:对 MXenes-聚电解质结构可调 3D 组件的纳米级相互作用的机理理解
  • 批准号:
    2238908
  • 财政年份:
    2023
  • 资助金额:
    $ 62.97万
  • 项目类别:
    Standard Grant
CAREER: Understanding Nanoscale Interactions at Single-Particle and Single-Cell Levels
职业:了解单粒子和单细胞水平的纳米级相互作用
  • 批准号:
    2048130
  • 财政年份:
    2021
  • 资助金额:
    $ 62.97万
  • 项目类别:
    Standard Grant
CAREER: Understanding, Development and Applications of Nanoscale Memristor Devices
职业:纳米级忆阻器器件的理解、开发和应用
  • 批准号:
    0954621
  • 财政年份:
    2010
  • 资助金额:
    $ 62.97万
  • 项目类别:
    Standard Grant
CAREER: Understanding Nanoscale Deformation by Characterizing the Mechanical Behavior of Nanoporous Noble Metals
职业:通过表征纳米多孔贵金属的机械行为来了解纳米级变形
  • 批准号:
    0847693
  • 财政年份:
    2008
  • 资助金额:
    $ 62.97万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了