NSF Convergence Accelerator Track I: Enhanced Biobased Textiles and Composites Via Microbially Produced Silk Proteins
NSF 融合加速器轨道 I:通过微生物产生的丝蛋白增强生物基纺织品和复合材料
基本信息
- 批准号:2236099
- 负责人:
- 金额:$ 74.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The fashion industry is one of the biggest contributors to climate change, with estimated greenhouse gas emissions between 5-10% of all global emissions. This number exceeds that of other sectors of concern, such as aviation and shipping, and is expected to grow another 30% by 2030. Materials derived from crude oil and methane account for around two-thirds of all textiles. These synthetic textiles have driven the growth of cheap, short-lived clothing associated with the “fast fashion”, fueling even higher consumption and emissions. This fast fashion business model accelerates a linear take-make-waste plastics economy, where virgin feedstock is predominantly used, and clothing are only worn a handful of times before being landfilled or incinerated. Because most synthetic textiles are not biodegradable, increase of plastic pollution in the environment is an inevitable consequence of the fashion industry today. The goal of this project is to explore the fabrication of fossil-free biodegradable textiles and fibers that exhibit performance attributes suitable for replacing conventional materials in the fashion industry. Such conventional materials include synthetic fibers, such as polyesters, polyurethanes, and nylons, as well as non-sustainable natural materials, such as leather. Specifically, this project will develop manufacturing processes for fabricating renewable fossil-free yarns, dyes, and leather-like fabrics that combine fungi/plant-derived biomass with artificial silk protein for enhanced performance in consumer textile applications. This project will also explore the use of recombinant proteins and dyes that are produced by microbial upcycling of waste recalcitrant plastic, thus increasing the sustainability impact of the materials innovations. Non-academic collaborators will include industry and non-profit participants who will provide market and supply chain insight as well as materials design and processing expertise. Technoeconomic analysis will help identify strategies for technology, market, business development that promote adoption by underserved customer bases, including Black, Hispanic, and low-income communities. This project will also develop outreach programs for K-12 students regarding sustainable fashion.Most biomaterials development efforts to date primarily focus on a single biopolymer class. Nature, however, extensively leverages the synergy of different biomolecular classes to yield materials that exhibit almost paradoxical properties (e.g. stiff yet tough, strong yet extensible). This project will synthesize 100% fossil-free biomaterials that feature diverse classes of biomacromolecules. Research efforts will focus on developing strategies for enhancing the properties of a cellulosic (bast fiber) or chitinaceous (mycelium) base material, which are strong and stiff but lack sufficient toughness and durability, with recombinantly engineered silk fibroin, which will contribute to material robustness. This project will also manufacture chromoprotein dyes as a biobased alternative to conventional textile dyes. By developing new biocomposite materials and manufacturing processes, this project will help fill a knowledge gap in the rational design and fabrication of multi-component biomaterials with emergent properties. This project will also contribute technoeconomic, lifecycle, and disruptive potential analyses that will guide future biomaterials development, with particular focus on encouraging product adoption in underserved customer bases. Phase 1 deliverables will include prototyped Silk-Enhanced Mycelium Leather, Hemp-Silk yarn, waste-derived chromoprotein dyes, associated manufacturing processes, and cost and disruptive technological change models. To support commercially relevant innovation, this project will involve cross-sector participation by various non-profit and industry partners. Additionally, in collaboration with the RPI Engineering Ambassadors program, outreach experiences for K-12 students in the New York Capital Region will be developed to teach basic concepts in sustainable fashion.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
时尚业是气候变化的最大贡献者之一,估计温室气体排放量占全球总排放量的 5-10%,这一数字超过了航空和航运等其他令人关注的行业,并且预计还会再增长。到 2030 年,这一比例将达到 30%。源自原油和甲烷的材料约占所有纺织品的三分之二。这些合成纺织品推动了与“快时尚”相关的廉价、短命服装的增长,从而推动了更高的消费和消费。这种快时尚商业模式加速了线性的“取-造-废”塑料经济,其中主要使用原始原料,而衣服在被填埋或焚烧之前只穿了几次,因为大多数合成纺织品不可生物降解,因此排放量增加。环境中的塑料污染是当今时尚业不可避免的后果,该项目的目标是探索无化石可生物降解纺织品和纤维的制造,这些纺织品和纤维具有适合替代时尚业传统材料的性能。包括合成纤维,如聚酯、聚氨酯和尼龙,以及不可持续的天然材料,如皮革。该项目将专门开发制造可再生无化石纱线、染料和仿皮革织物的制造工艺,这些工艺结合了真菌/植物源生物质与人造丝蛋白一起增强消费纺织品应用的性能该项目还将探索通过微生物升级回收废物顽固物产生的重组蛋白和染料的使用。塑料,从而提高材料创新的可持续性影响。非学术合作者将包括行业和非营利参与者,他们将提供市场和供应链见解以及材料设计和加工专业知识,以帮助确定技术、该项目还将为 K-12 学生制定有关可持续时尚的推广计划。迄今为止,大多数生物材料开发工作主要集中在单一领域。生物聚合物类。然而,大自然通常利用不同生物分子类别的协同作用来生产表现出近乎矛盾的特性的材料(例如坚硬但坚韧、坚固但可延展),该项目将合成具有不同类别生物大分子特征的 100% 无化石生物材料。将重点开发增强纤维素(麻纤维)或几丁质(菌丝体)基础材料性能的策略,这些材料坚固而坚硬,但缺乏足够的韧性和耐用性,重组工程丝素蛋白,这将有助于材料的坚固性。该项目还将生产色素蛋白染料,作为传统纺织染料的生物基替代品。通过开发新的生物复合材料和制造工艺,该项目将有助于填补合理设计和制造方面的知识空白。该项目还将提供技术经济、生命周期和颠覆性潜力分析,以指导未来生物材料的开发,特别注重鼓励服务不足的地区采用产品。第一阶段的交付成果将包括原型丝绸增强菌丝体皮革、大麻丝纱线、废物衍生的色蛋白染料、相关制造工艺以及成本和颠覆性技术变革模型。此外,与 RPI 工程大使计划合作,将为纽约首都地区的 K-12 学生开发外展经验,以教授可持续时尚的基本概念。授予 NSF 的法定使命,并通过评估反映使用基金会的智力优点和更广泛的影响审查标准,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Runye Zha其他文献
Runye Zha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Runye Zha', 18)}}的其他基金
MRI: Acquisition of a Photo-Induced Force Microscope for High Resolution Nanoscale Spectroscopic Imaging and Analysis
MRI:获取光诱导力显微镜以进行高分辨率纳米级光谱成像和分析
- 批准号:
2215905 - 财政年份:2022
- 资助金额:
$ 74.5万 - 项目类别:
Standard Grant
CAREER: Functional Fouling of Surfaces by Interfacial Silk Fibroin Self-Assembly
职业:通过界面丝素蛋白自组装实现表面功能性污垢
- 批准号:
2045510 - 财政年份:2021
- 资助金额:
$ 74.5万 - 项目类别:
Continuing Grant
RAPID: Polyelectrolyte Coatings as an Approach to Extend N95 Respirator Usage Lifespan
RAPID:聚电解质涂层是延长 N95 呼吸器使用寿命的方法
- 批准号:
2028763 - 财政年份:2020
- 资助金额:
$ 74.5万 - 项目类别:
Standard Grant
FMSG: GOALI: Microbial Upcycling of Petrochemical Polymer Waste into High Value Protein-Based Polymers for a Circular Economy
FMSG:GOALI:通过微生物将石化聚合物废物升级为高价值蛋白质基聚合物,实现循环经济
- 批准号:
2036768 - 财政年份:2020
- 资助金额:
$ 74.5万 - 项目类别:
Standard Grant
相似国自然基金
熵格子玻尔兹曼方法的边界处理及收敛性分析研究
- 批准号:12301520
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多飞行器给定任务时间的指定时刻收敛控制研究
- 批准号:62303256
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
通算协同的高准确、快收敛无线分布式学习优化研究
- 批准号:62301222
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Stokes方程的高阶元有限体积法的稳定性和收敛性
- 批准号:12301506
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数据驱动的降维优化流场加速收敛方法研究
- 批准号:12372290
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
- 批准号:
2343806 - 财政年份:2024
- 资助金额:
$ 74.5万 - 项目类别:
Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
- 批准号:
2344284 - 财政年份:2024
- 资助金额:
$ 74.5万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
- 批准号:
2344472 - 财政年份:2024
- 资助金额:
$ 74.5万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
- 批准号:
2344476 - 财政年份:2024
- 资助金额:
$ 74.5万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
- 批准号:
2344256 - 财政年份:2024
- 资助金额:
$ 74.5万 - 项目类别:
Standard Grant