EAGER/Collaborative Research: CRYO: Engineering Atomically Thin Magnetic Materials for Efficient Solid-State Cooling at Cryogenic Temperatures
EAGER/合作研究:CRYO:工程原子薄磁性材料,可在低温下进行高效固态冷却
基本信息
- 批准号:2233592
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Solid-state cooling schemes can potentially circumvent the use of increasingly expensive and scarce He3 in cryogenic refrigeration below 1K. He3 is required in almost all current commercial ultralow refrigeration approaches used in the operation of quantum computers, sensors and other new technologies. This EArly-concept Grant for Exploratory Research (EAGER) project will advance the fundamental understanding of the heat-release process in ultrathin magnetic materials and thus provide the guidance to manufacture magnetic quantum materials for next-generation solid-state refrigeration, promoting the fundamental physics of heat transport and cooling on the nanoscale and aid in the development of new classes of cooling technologies. When certain magnetic materials are magnetized at low temperatures, the removal of the magnetic field leads to the randomization of once magnetically ordered domains within material. During the formation or ordering of these of multiple magnetic domains, thermal energy in the material is absorbed by domains to reorient their magnetizations, thereby leading to temperature drop (i.e., cooling). Atomically thin magnetic materials can be engineered to control and enhance these processes and thus could open up unexplored opportunities for emerging cooling devices. This effort will support the fundamental research to understand the modifications to these magnetic quantum materials to enable efficient solid-state cooling, particularly at cryogenic temperatures such as below 1K. The technology to be developed can mitigate the existing challenges associated with the worldwide shortage of helium. High-school students and students of traditionally underrepresented groups will be exposed to the comprehensive training including quantum materials fabrication, materials modelling and simulation, cryogenic hardware engineering, and low-temperature experiments. This research will help to equip these students with necessary knowledge and expertise as the workforce for the future quantum science and engineering.The magnetocaloric effect holds a great potential for solid-state refrigeration. However, the magnetocaloric effect in traditional materials is not strong, but it can be enhanced if a structural phase change can be concomitant with the magnetic phase transition. However, inducing these first-order phase transitions have conventionally relied on the compositional modification of the material through scarce and expensive rare-earth-elements based compounds. This research proposes to overcome the knowledge gap in the understanding and control of two-dimensional magnetic materials for an enhanced magnetocaloric effect. The research team will apply first-principles materials simulations to understand the magnetism-structure relationship in two-dimensional magnets, employ experimental synthesis and processing to engineer two-dimensional magnets, and apply magnetoelectric and magneto-optical characterizations to quantify the resultant magnetic properties. The research will elucidate the fundamental relationship between local atomic structures, crystalline structures and magnetic properties of emerging two-dimensional magnets, which could provide useful guidance for the design and optimization of low-dimensional magnetic structures for clean cooling technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
固态冷却方案有可能避免在 1K 以下的低温制冷中使用日益昂贵且稀缺的 He3。目前,在量子计算机、传感器和其他新技术的运行中使用的几乎所有商用超低制冷方法都需要 He3。这个早期概念探索性研究资助(EAGER)项目将增进对超薄磁性材料放热过程的基本理解,从而为制造用于下一代固态制冷的磁性量子材料提供指导,促进基础物理的发展纳米级的热传输和冷却,并有助于开发新型冷却技术。当某些磁性材料在低温下磁化时,磁场的去除会导致材料内曾经磁性有序的磁畴随机化。在多个磁畴的形成或排序过程中,材料中的热能被磁畴吸收以重新定向其磁化强度,从而导致温度下降(即冷却)。原子薄磁性材料可以被设计来控制和增强这些过程,从而可以为新兴冷却设备开辟尚未探索的机会。这项工作将支持基础研究,以了解对这些磁性量子材料的修改,以实现高效的固态冷却,特别是在低于 1K 的低温下。即将开发的技术可以缓解与全球氦气短缺相关的现有挑战。高中生和传统上代表性不足群体的学生将接受包括量子材料制造、材料建模和模拟、低温硬件工程和低温实验在内的综合培训。这项研究将有助于为这些学生提供必要的知识和专业知识,成为未来量子科学和工程的劳动力。磁热效应在固态制冷方面具有巨大的潜力。然而,传统材料的磁热效应并不强,但如果结构相变能够与磁相变同时发生,则可以增强磁热效应。然而,诱导这些一级相变通常依赖于通过稀有且昂贵的稀土元素基化合物对材料进行成分修饰。这项研究旨在克服二维磁性材料理解和控制方面的知识差距,以增强磁热效应。研究团队将应用第一原理材料模拟来了解二维磁体的磁结构关系,采用实验合成和处理来设计二维磁体,并应用磁电和磁光表征来量化所得的磁特性。该研究将阐明新兴二维磁体的局域原子结构、晶体结构和磁性能之间的基本关系,可为清洁冷却技术的低维磁结构的设计和优化提供有用的指导。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cheng Gong其他文献
First-principles studies of the mixed-dimensional van der Waals heterostructures of graphene/MnF4
石墨烯/MnF4混合维范德华异质结构的第一性原理研究
- DOI:
10.1063/5.0101618 - 发表时间:
2022-08 - 期刊:
- 影响因子:3.2
- 作者:
Baojuan Xin;Kaixin Zou;Dayong Liu;Shanchuan Liang;Hong Dong;Feng Lu;Cheng Gong;Feng Luo;Wei-Hua Wang - 通讯作者:
Wei-Hua Wang
Heterogeneity characterization of the lower Silurian Longmaxi marine shale in the Pengshui area, South China
华南彭水地区下志留统龙马溪海相页岩非均质性特征
- DOI:
10.1016/j.coal.2018.05.015 - 发表时间:
2018-07 - 期刊:
- 影响因子:5.6
- 作者:
Luchuan Zhang;Bo Li;Shu Jiang;Dianshi Xiao;Shuangfang Lu;Yuying Zhang;Cheng Gong;Lei Chen - 通讯作者:
Lei Chen
One-year Field Study on Indoor Environment of Huizhou Traditional Vernacular Dwellings in China
中国徽州传统民居室内环境一年实地考察
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Zhijia Huang;Mengqi Yu;Liangji Zheng;Cheng Gong;Zhouqin Wu - 通讯作者:
Zhouqin Wu
Analysis and Modeling of Eddy-Current Couplings for Auxiliary Power Generation on a Freight Train Wagon
货车辅助发电涡流耦合分析与建模
- DOI:
10.1109/jpets.2018.2871629 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
M. Flankl;Arda Tüysüz;Cheng Gong;T. Stolz;J. Kolar - 通讯作者:
J. Kolar
Geo-localization based on CNN feature matching
基于CNN特征匹配的地理定位
- DOI:
10.1007/s11801-022-1148-0 - 发表时间:
2022 - 期刊:
- 影响因子:0.9
- 作者:
Jin Tang;Cheng Gong;F. Guo;Zirong Yang;Zhihu Wu - 通讯作者:
Zhihu Wu
Cheng Gong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cheng Gong', 18)}}的其他基金
CAREER: Multiferroicity in van der Waals Heterostructures
职业:范德华异质结构的多铁性
- 批准号:
2340773 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Understanding and Controlling Magnetic Two-Dimensional Crystals
理解和控制磁性二维晶体
- 批准号:
2326944 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似国自然基金
基于交易双方异质性的工程项目组织间协作动态耦合研究
- 批准号:72301024
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向协作感知车联网的信息分发时效性保证关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Standard Grant