EAGER/Collaborative Research: CRYO: Engineering Atomically Thin Magnetic Materials for Efficient Solid-State Cooling at Cryogenic Temperatures
EAGER/合作研究:CRYO:工程原子薄磁性材料,可在低温下进行高效固态冷却
基本信息
- 批准号:2233375
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Solid-state cooling schemes can potentially circumvent the use of increasingly expensive and scarce He3 in cryogenic refrigeration below 1K. He3 is required in almost all current commercial ultralow refrigeration approaches used in the operation of quantum computers, sensors and other new technologies. This EArly-concept Grant for Exploratory Research (EAGER) project will advance the fundamental understanding of the heat-release process in ultrathin magnetic materials and thus provide the guidance to manufacture magnetic quantum materials for next-generation solid-state refrigeration, promoting the fundamental physics of heat transport and cooling on the nanoscale and aid in the development of new classes of cooling technologies. When certain magnetic materials are magnetized at low temperatures, the removal of the magnetic field leads to the randomization of once magnetically ordered domains within material. During the formation or ordering of these of multiple magnetic domains, thermal energy in the material is absorbed by domains to reorient their magnetizations, thereby leading to temperature drop (i.e., cooling). Atomically thin magnetic materials can be engineered to control and enhance these processes and thus could open up unexplored opportunities for emerging cooling devices. This effort will support the fundamental research to understand the modifications to these magnetic quantum materials to enable efficient solid-state cooling, particularly at cryogenic temperatures such as below 1K. The technology to be developed can mitigate the existing challenges associated with the worldwide shortage of helium. High-school students and students of traditionally underrepresented groups will be exposed to the comprehensive training including quantum materials fabrication, materials modelling and simulation, cryogenic hardware engineering, and low-temperature experiments. This research will help to equip these students with necessary knowledge and expertise as the workforce for the future quantum science and engineering.The magnetocaloric effect holds a great potential for solid-state refrigeration. However, the magnetocaloric effect in traditional materials is not strong, but it can be enhanced if a structural phase change can be concomitant with the magnetic phase transition. However, inducing these first-order phase transitions have conventionally relied on the compositional modification of the material through scarce and expensive rare-earth-elements based compounds. This research proposes to overcome the knowledge gap in the understanding and control of two-dimensional magnetic materials for an enhanced magnetocaloric effect. The research team will apply first-principles materials simulations to understand the magnetism-structure relationship in two-dimensional magnets, employ experimental synthesis and processing to engineer two-dimensional magnets, and apply magnetoelectric and magneto-optical characterizations to quantify the resultant magnetic properties. The research will elucidate the fundamental relationship between local atomic structures, crystalline structures and magnetic properties of emerging two-dimensional magnets, which could provide useful guidance for the design and optimization of low-dimensional magnetic structures for clean cooling technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
固态冷却方案可能可能规避在1K以下的低温制冷中使用日益昂贵和稀缺的HE3。在量子计算机,传感器和其他新技术的运行中,几乎所有当前商业超低制冷方法都需要HE3。这项对探索性研究(急切)项目的早期概念赠款将提高对超薄磁性材料中热释放过程的基本理解,从而为下一代固态制冷提供制造磁性量子材料的指导,从而促进纳米级热传输和冷却的基本物理,并帮助新类冷却技术的开发。当某些磁性材料在低温下被磁化时,磁场的去除会导致材料中曾经有序的域的随机化。在多个磁域的形成或排序中,材料中的热能被域吸收以重新定位其磁化,从而导致温度下降(即冷却)。可以对原子薄的磁性材料进行设计以控制和增强这些过程,因此可以为新兴的冷却设备打开未开发的机会。这项工作将支持基本研究,以了解对这些磁性量子材料的修改,以实现有效的固态冷却,尤其是在低于1K之下的低温温度下。要开发的技术可以减轻与全球氦短缺相关的现有挑战。高中生和传统代表性群体的学生将接受全面的培训,包括量子材料制造,材料建模和模拟,低温硬件工程和低温实验。这项研究将有助于为这些学生提供必要的知识和专业知识,作为未来量子科学和工程的劳动力。磁性效应具有固态制冷的巨大潜力。但是,传统材料中的磁电效应并不强,但是如果结构相变为磁相变变,则可以增强。但是,诱导这些一阶相变为通常通过稀缺和昂贵的稀有元素化合物对材料的组成修饰。这项研究提议克服对二维磁性材料的理解和控制的知识差距,从而增强磁平的效应。研究小组将应用第一原理材料模拟,以了解二维磁体中的磁性结构关系,采用实验合成和加工来工程师二维磁铁,并应用磁电和磁光学特征来量化所得的磁性特性。这项研究将阐明新出现的二维磁铁的局部原子结构,结晶结构和磁性之间的基本关系,这可以为清洁冷却技术的低维磁性结构设计和优化提供有用的指导,以反映NSF的法定任务,并通过评估了概念,并反映了对基础的支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Small-voltage multiferroic control of two-dimensional magnetic insulators
- DOI:10.1038/s41928-023-00931-1
- 发表时间:2023-03
- 期刊:
- 影响因子:34.3
- 作者:Shanchuan Liang;T. Xie;N. Blumenschein;T. Zhou;Thomas Ersevim;Zhihao Song;Jierui Liang;M. Susner-M.
- 通讯作者:Shanchuan Liang;T. Xie;N. Blumenschein;T. Zhou;Thomas Ersevim;Zhihao Song;Jierui Liang;M. Susner-M.
Compositional Engineering of Magnetic Anisotropy in Cr2Si Ge2-Te6
- DOI:10.1016/j.mtelec.2023.100081
- 发表时间:2023-11
- 期刊:
- 影响因子:0
- 作者:Ti Xie;Shanchuan Liang;Samuel Deitemyer;Qinqin Wang;Tong Zhou;Igor Žutić;Xixiang Zhang;Dongsheng Yuan;Xiang Zhang;Cheng Gong
- 通讯作者:Ti Xie;Shanchuan Liang;Samuel Deitemyer;Qinqin Wang;Tong Zhou;Igor Žutić;Xixiang Zhang;Dongsheng Yuan;Xiang Zhang;Cheng Gong
共 2 条
- 1
Igor Zutic的其他基金
Integrating Superconducting and Spintronics Devices for Low-Power and High-Speed Operation and Brain-Inspired Computing
集成超导和自旋电子器件以实现低功耗和高速运行以及类脑计算
- 批准号:21308452130845
- 财政年份:2021
- 资助金额:$ 9万$ 9万
- 项目类别:Standard GrantStandard Grant
Bipolar Spintronic Devices with Two-Dimensional Systems
具有二维系统的双极自旋电子器件
- 批准号:18102661810266
- 财政年份:2018
- 资助金额:$ 9万$ 9万
- 项目类别:Standard GrantStandard Grant
Using Spin-Polarized Carriers in Semiconductor Lasers for Optical Interconnects
在半导体激光器中使用自旋偏振载流子进行光互连
- 批准号:15088731508873
- 财政年份:2015
- 资助金额:$ 9万$ 9万
- 项目类别:Standard GrantStandard Grant
Semiconductor Spin-Lasers
半导体自旋激光器
- 批准号:11020921102092
- 财政年份:2011
- 资助金额:$ 9万$ 9万
- 项目类别:Standard GrantStandard Grant
CAREER: Spin-Polarized Transport and Spintronic Devices
职业:自旋极化传输和自旋电子器件
- 批准号:05474820547482
- 财政年份:2006
- 资助金额:$ 9万$ 9万
- 项目类别:Continuing GrantContinuing Grant
相似国自然基金
临时团队协作历史对协作主动行为的影响研究:基于社会网络视角
- 批准号:72302101
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
在线医疗团队协作模式与绩效提升策略研究
- 批准号:72371111
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
- 批准号:32302064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向人机接触式协同作业的协作机器人交互控制方法研究
- 批准号:62373044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:23336042333604
- 财政年份:2024
- 资助金额:$ 9万$ 9万
- 项目类别:Standard GrantStandard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:23476242347624
- 财政年份:2024
- 资助金额:$ 9万$ 9万
- 项目类别:Standard GrantStandard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:23442152344215
- 财政年份:2024
- 资助金额:$ 9万$ 9万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:23455812345581
- 财政年份:2024
- 资助金额:$ 9万$ 9万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:23455822345582
- 财政年份:2024
- 资助金额:$ 9万$ 9万
- 项目类别:Standard GrantStandard Grant