Bio-Optical Computing Devices: Multi-Valued Logic Elements via Photonic Bio-Materials
生物光学计算设备:通过光子生物材料的多值逻辑元件
基本信息
- 批准号:2203806
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The principal investigator of this project aims to develop a novel materials platform for potentially powerful bio-computing beyond current semiconductor-based materials. Quantum computation has long been theorized to be the next generation powerful computing but currently relies on specific materials and phenomena that work at non-natural environment such as extremely low temperatures. Beyond original quantum systems, the principles of super-computing with multi-level logic elements can be expanded by exploring novel physical phenomena and materials to achieve multi-level signal processing with drastically increased productivity. This approach requires further exploration of principles beyond binary logic and traditional classical inorganic structures and physical phenomena. These novel photonic-based computational logic elements will be considered in this project with the ability to be integrated with future electronic circuits. This research is to provide a flexible, bendable, conformal and sustainable platform for bio-photonic thin film transistors, as for the human-machine interface, with enormous parallel processing abilities for wearable and implantable bioelectronic devices for skin, under-skin and brain use. The educational philosophy of the PI focuses on the individual students themselves and their early involvement in research, which is critical for getting students into sustainable research careers, especially young people from unrepresented groups.The focus of this research is the exploration of the design and integration of heterostructured bio-based photonic materials as active dielectric layers with different wavelength-active organic semiconductors to create bio-organic field-effect transistors (BOFET). These structured materials will be a base for a prospective multi-value logic system that may enable powerful bio-computing. The main conceptual hypothesis of the proposed research is the suggestion that the integration of unique electronic and optical properties, responsive behavior and photonic properties of robust and flexible chiral bio-derived materials with thin film electronic technology might lead to the creation of super-multi-value logic BOFET devices with superior computational performance at ambient conditions in future wearable human-interface friendly bioelectronics. Three major research tasks to be conducted in this project include: i) synthesis and fabrication of active biophotonic thin films from cellulose-nanocrystals with chiral nematic organization in conjunction with responsive photonic behavior as triggered by external illumination from different photon energies and polarizations and relative humidity; ii) design and fabrication of an active dielectric layer integrated with organic semiconducting polymers at an organic/inorganic interface and further integration with electronic-relevant substrates to enable BOFETs with unique opto-electronic properties; and iii) testable design of full-scale multifunctional BOFET prototype device as a novel photonic-based multi-value logic element with potential for high level logic operations including ternary and quaternary logic values. Finally, the PI will study critical output electronic characteristics at variable photon energy, polarization, and environmental conditions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的首席研究员旨在开发一种新型材料平台,用于超越当前半导体材料的潜在强大生物计算。 量子计算长期以来一直被认为是下一代强大的计算,但目前依赖于在非自然环境(例如极低的温度)下工作的特定材料和现象。 除了原始的量子系统之外,还可以通过探索新颖的物理现象和材料来扩展具有多级逻辑元件的超级计算的原理,以实现多级信号处理,从而显着提高生产率。 这种方法需要进一步探索二元逻辑和传统经典无机结构和物理现象之外的原理。该项目将考虑这些新颖的基于光子的计算逻辑元件,使其能够与未来的电子电路集成。 这项研究旨在为生物光子薄膜晶体管提供一个灵活、可弯曲、共形和可持续的平台,就像人机界面一样,为皮肤、皮下和大脑使用的可穿戴和可植入生物电子设备提供巨大的并行处理能力。 PI的教育理念注重学生个体及其早期参与研究,这对于让学生,特别是来自无代表性群体的年轻人进入可持续的研究职业至关重要。本研究的重点是探索设计和整合异质结构生物基光子材料作为活性介电层与不同波长活性有机半导体,以创建生物有机场效应晶体管(BOFET)。 这些结构化材料将成为未来多值逻辑系统的基础,该系统可以实现强大的生物计算。该研究的主要概念假设是,将坚固且灵活的手性生物衍生材料的独特电子和光学特性、响应行为和光子特性与薄膜电子技术相结合,可能会导致超多层材料的产生。在未来可穿戴人机界面友好的生物电子学中,价值逻辑 BOFET 器件在环境条件下具有卓越的计算性能。该项目将进行的三项主要研究任务包括:i)从具有手性向列组织的纤维素纳米晶体合成和制造活性生物光子薄膜,并结合不同光子能量、偏振和相对湿度的外部照明触发的响应光子行为; ii) 设计和制造在有机/无机界面处与有机半导体聚合物集成的活性介电层,并进一步与电子相关基板集成,以使 BOFET 具有独特的光电特性; iii) 全尺寸多功能 BOFET 原型器件的可测试设计,作为一种新颖的基于光子的多值逻辑元件,具有高级逻辑运算的潜力,包括三元和四元逻辑值。 最后,PI 将研究可变光子能量、偏振和环境条件下的关键输出电子特性。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multivalued Logic for Optical Computing with Photonically Enabled Chiral Bio-organic Structures
具有光子手性生物有机结构的光学计算多值逻辑
- DOI:10.1021/acsnano.2c04182
- 发表时间:2022-09
- 期刊:
- 影响因子:17.1
- 作者:Han, Moon Jong;Kim, Minkyu;Tsukruk, Vladimir V.
- 通讯作者:Tsukruk, Vladimir V.
Spectroscopy finds chiral phonons
光谱学发现手性声子
- DOI:10.1038/s41566-022-00991-3
- 发表时间:2022-05-01
- 期刊:
- 影响因子:35
- 作者:Minkyu Kim;V. Tsukruk
- 通讯作者:V. Tsukruk
Chiro‐Optoelectronic Encodable Multilevel Thin Film Electronic Elements with Active Bio‐Organic Electrolyte Layer
具有活性生物有机电解质层的 Chiro 光电可编码多级薄膜电子元件
- DOI:10.1002/smll.202207921
- 发表时间:2023-05
- 期刊:
- 影响因子:13.3
- 作者:Han, Moon Jong;Kim, Minkyu;Tsukruk, Vladimir V.
- 通讯作者:Tsukruk, Vladimir V.
Chiral Optoelectronic Functionalities via DNA–Organic Semiconductor Complex
DNA 有机半导体复合物的手性光电功能
- DOI:10.1021/acsnano.1c08641
- 发表时间:2021-12
- 期刊:
- 影响因子:17.1
- 作者:Han, Moon Jong;Yun, Hee Seong;Cho, Yongjoon;Kim, Minkyu;Yang, Changduk;Tsukruk, Vladimir V.;Yoon, Dong Ki
- 通讯作者:Yoon, Dong Ki
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vladimir Tsukruk其他文献
Vladimir Tsukruk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vladimir Tsukruk', 18)}}的其他基金
Assembly of Novel Branched Ionic Polymers: Chirality Induction and 2D Heterostructures
新型支化离子聚合物的组装:手性感应和二维异质结构
- 批准号:
2404081 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Collaborative Research: Organized Nanochannel Materials from Biomolecular Magnetic Organic Frameworks-
合作研究:从生物分子磁性有机框架组织纳米通道材料-
- 批准号:
2303580 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Tailored Molecular Transport In Low-Dimensional Hybrid Materials From 1D Nanocrystals And 2D Nanosheets
一维纳米晶体和二维纳米片低维混合材料中的定制分子传输
- 批准号:
2202907 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Synthesis and Assembly 2D Heterostructured Hybrid Stacks
合成和组装 2D 异质结构混合堆栈
- 批准号:
2200366 - 财政年份:2022
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Percolated morphologies of branched-star poly(ionic liquid)s
支化星型聚离子液体的渗透形貌
- 批准号:
2001968 - 财政年份:2020
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Synthesis and Reversible Self-Assembly of Monodisperse Plasmonic Nanorods Permanently Ligated with Photoresponsive Polymers
光响应聚合物永久连接单分散等离子体纳米棒的合成与可逆自组装
- 批准号:
1903957 - 财政年份:2019
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Flexible Bioenabled Chiral Lasing Materials
柔性生物赋能手性激光材料
- 批准号:
1803495 - 财政年份:2018
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
SYNTHESIS, ASSEMBLY, AND ELECTROCHROMIC BEHAVIOR OF NANOSTRUCTURED CONJUGATED POLYMER/METAL INTERFACES
纳米结构共轭聚合物/金属界面的合成、组装和电致变色行为
- 批准号:
1506046 - 财政年份:2015
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Responsive Branched Miktoarm and Ionic-Liquid Materials
响应性支化臂和离子液体材料
- 批准号:
1505234 - 财政年份:2015
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Nanostructured Surfaces with Selective Biotraps for Sensing
具有用于传感的选择性生物陷阱的纳米结构表面
- 批准号:
1401720 - 财政年份:2014
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
相似国自然基金
光学注意力调控机制的单透镜拓频及计算成像研究
- 批准号:62375067
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
金属纳米结构中光学响应现象的可计算建模及高精度数值方法
- 批准号:12271082
- 批准年份:2022
- 资助金额:46 万元
- 项目类别:面上项目
支持多种计算模型的光学存算一体神经网络加速器研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
纳米光子学非局部光学模型的降阶计算研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
二维B-C-N材料的电子结构和光学性质的快速GW计算
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Quantum computing with trapped ions Fast, high-fidelity entanglement via optical phase control
使用捕获离子进行量子计算 通过光学相位控制实现快速、高保真纠缠
- 批准号:
2886990 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Studentship
Computational Ophthalmology and Biomedical Informatics
计算眼科和生物医学信息学
- 批准号:
10709404 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Minimally-invasive technology for personalized nutritional monitoring
用于个性化营养监测的微创技术
- 批准号:
10693521 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Neural and behavioral mechanisms of song learning in zebra finches
斑胸草雀鸣叫学习的神经和行为机制
- 批准号:
10678601 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Learning-based 3D modeling of AMD to assess disease progression and response to treatment
基于学习的 AMD 3D 建模,用于评估疾病进展和治疗反应
- 批准号:
10592517 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别: