ExpandQISE: Track 1: Fingerprinting and engineering tunable carbon-based quantum emitters in hexagonal boron nitride
ExpandQISE:轨道 1:六方氮化硼中的指纹识别和工程可调谐碳基量子发射器
基本信息
- 批准号:2231278
- 负责人:
- 金额:$ 79.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical description:Emerging quantum technologies are poised to revolutionize science and everyday life, from finance and sensing to computation and medicine. At the core of these technologies is the quantum bit, or qubit. Hence, there is an intense search to find viable, robust qubit candidates. Certain defects, called deep-level defects, in electrically insulating materials are often described as “artificial atoms/molecules.” This is because under illumination they behave like atoms. Such defects are important amongst the solid-state implementations of qubits. In recent years, deep-level defects have been discovered in two-dimensional layered hexagonal boron nitride. Their identities, however, have largely remained a mystery, which has frustrated both the ability to make them and to control their properties. This joint theory-experiment project brings together a research team of scientists from the Howard University and University of Oregon to identify and tailor promising carbon-based deep-level defects in hexagonal boron nitride layers via a combination of theoretical and experimental defect-fingerprinting techniques. The work also impacts the needs of this field more broadly, by establishing the use of fingerprinting-techniques to identify deep-level defects in other 2D layered materials. The project directly engages graduate and undergraduate students from the two universities, boosting participation of underrepresented groups in quantum information science and engineering (QISE). Research and workforce development efforts, such as the establishment of new QISE courses at the two universities, a remotely accessible quantum testbed, and year-round skill-building mini-workshops for undergraduates are designed to help train and broaden participation of students in QISE.Technical description:Quantum information science and technologies are at the frontiers of modern science. These technologies require robust and long-lived qubits. Defect-based quantum emitters in wide-bandgap semiconductors have emerged as leading qubit-candidates for use in future quantum-information and quantum-sensing applications due to their potential for scalability and integration. In particular, two-dimensional hosts offer unparalleled opportunities for the near-deterministic placement of quantum emitters and tailoring of their properties via strain engineering. Notwithstanding these advantages, the full potential of these quantum emitters remains unrealized due to difficulties in uniquely identifying them, thereby thwarting attempts to engineer their photophysical and quantum properties. This project uses a novel combination of theoretical and experimental fingerprinting studies, which involve applying external stimuli to determine unique responses of different defects, thereby, identifying these defects uniquely. The strain-induced tailoring of different properties of quantum emitters to tune the target properties (such as emission frequencies) allows for their use in different quantum applications. Broader impacts on the field include a potential to use the fingerprinting-techniques to identify deep-level defects in other two-dimensional layered materials. The project also enables a broader range of frontier science studies and discoveries, including new quantum-based sensing modalities.The project is co-funded by The Office of Multidisciplinary Activities (OMA), and the Historically Black Colleges and Universities Undergraduate Program (HBCU-UP).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:新兴的量子技术有望彻底改变科学和日常生活,从金融和传感到计算和医学,这些技术的核心是量子比特,因此,人们正在大力寻找可行的技术。电绝缘材料中的某些缺陷(称为深层缺陷)通常被描述为“人造原子/分子”。这是因为它们在光照下表现得像原子一样。近年来,在二维层状六方氮化硼中发现了深层缺陷,但它们的身份在很大程度上仍然是个谜,这阻碍了它们的制造和控制其特性的能力。这个联合理论实验项目汇集了来自霍华德大学和俄勒冈大学的科学家研究团队,通过理论和实验相结合来识别和定制六方氮化硼层中有前途的碳基深层缺陷这项工作还更广泛地影响了该领域的需求,通过使用指纹技术来识别其他二维分层材料中的深层缺陷,该项目直接吸引了两所大学的研究生和本科生。促进代表性不足的群体参与量子信息科学与工程(QISE)研究和劳动力发展工作,例如在两所大学建立新的 QISE 课程、远程访问量子测试平台以及全年技能培养。面向本科生的小型研讨会旨在帮助培训和扩大学生对 QISE 的参与。技术描述:量子信息科学和技术处于现代科学的前沿,这些技术需要基于缺陷的稳健且长寿命的量子发射器。宽带隙半导体由于其可扩展性和集成的潜力,已成为未来量子信息和量子传感应用的主要量子位候选者,特别是二维主机提供。尽管有这些优势,但由于难以唯一地识别它们,因此阻碍了对其光物理和量子工程的尝试,因此量子发射器的近确定性放置和定制其特性的无与伦比的机会。该项目采用理论和实验指纹研究的新颖结合,其中涉及应用外部刺激来确定不同缺陷的独特响应,从而独特地识别这些缺陷的不同属性的应变诱导剪裁。调整目标特性(例如发射频率)的量子发射器可以在不同的量子应用中使用,该领域的更广泛影响包括使用指纹识别技术来识别其他二维层状材料中的深层缺陷的潜力。该项目还实现了更广泛的前沿科学研究和发现,包括新的基于量子的传感模式。该项目由多学科活动办公室(OMA)和历史上黑人学院和大学本科生共同资助计划 (HBCU-UP)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Substrate-Induced Modulation of Quantum Emitter Properties in 2D Hexagonal Boron Nitride: Implications for Defect-Based Single Photon Sources in 2D Layers
二维六方氮化硼中量子发射体特性的衬底诱导调制:对二维层中基于缺陷的单光子源的影响
- DOI:10.1021/acsanm.2c05233
- 发表时间:2023
- 期刊:
- 影响因子:5.9
- 作者:Narayanan, Sai Krishna;Dev, Pratibha
- 通讯作者:Dev, Pratibha
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pratibha Dev其他文献
Pratibha Dev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pratibha Dev', 18)}}的其他基金
Collaborative Research: CyberTraining: Implementation: Medium: Cyber Training on Materials Genome Innovation for Computational Software (CyberMAGICS)
合作研究:网络培训:实施:媒介:计算软件材料基因组创新网络培训 (CyberMAGICS)
- 批准号:
2118099 - 财政年份:2021
- 资助金额:
$ 79.98万 - 项目类别:
Standard Grant
Collaborative Research: Physics and Quantum Technology Applications of Defects in Silicon Carbide
合作研究:碳化硅缺陷的物理和量子技术应用
- 批准号:
1738076 - 财政年份:2018
- 资助金额:
$ 79.98万 - 项目类别:
Standard Grant
CAREER:Understanding the Effects of the Immediate Environment on Intrinsic Properties of 2D Crystals: From Fundamental Science to Real World Applications
职业:了解直接环境对二维晶体固有特性的影响:从基础科学到实际应用
- 批准号:
1752840 - 财政年份:2018
- 资助金额:
$ 79.98万 - 项目类别:
Continuing Grant
相似国自然基金
融合多源生物信息-连续知识追踪解码-无关意图拒识机制的康复外骨骼人体运动意图识别研究
- 批准号:62373344
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于三维显微图像序列的细胞追踪与迁移行为分析方法
- 批准号:62301296
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用精准谱系追踪揭示关节囊纤维化导致颞下颌关节强直的分子机制研究
- 批准号:82301010
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医养结合机构服务模式对老年人健康绩效的影响、机制与引导政策:基于准自然实验的追踪研究
- 批准号:72374125
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
基于量子电压动态追踪补偿的精密磁通测量方法研究
- 批准号:52307021
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
- 批准号:
2324714 - 财政年份:2024
- 资助金额:
$ 79.98万 - 项目类别:
Standard Grant
RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
- 批准号:
2327025 - 财政年份:2024
- 资助金额:
$ 79.98万 - 项目类别:
Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
- 批准号:
2327206 - 财政年份:2024
- 资助金额:
$ 79.98万 - 项目类别:
Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
- 批准号:
2327232 - 财政年份:2024
- 资助金额:
$ 79.98万 - 项目类别:
Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
- 批准号:
2327267 - 财政年份:2024
- 资助金额:
$ 79.98万 - 项目类别:
Standard Grant