ASCENT: Reconfigurable Metal-Free Microsystems with Alternative Power Sources

ASCENT:具有替代电源的可重构无金属微系统

基本信息

  • 批准号:
    2231012
  • 负责人:
  • 金额:
    $ 149.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

This Addressing Systems Challenges through Engineering Teams (ASCENT) project will enable a suite of technologies for sustainable micro- and nano-electronics development. The emerging Internet-of-Things and efforts to realize a fully “connected” society and infrastructure requires the mass distribution of electronics, and to do this in a sustainable manner requires the development of eco-friendly electronic materials, circuits, and power sources. The research team will investigate the materials, low-power circuits, and alternative power sources (i.e., non-battery to engineer reconfigurable-metal-free microsystems that can operate with alternative power sources). These systems will (i) be completely composed of carbon-based materials, (ii) be operated from a bio-derived power source, (iii) provide sustained recording of a local environmental metric and (iv) achieve complete biodegradation or recycling upon the end of their operational lifetime. The combination of novel materials science, circuit design, and biofuel cells will enable the next-generation green electronics that can be mass produced at lower cost, at larger scales, distributed throughout our environment, and have minimal ecological impact, while achieving comparable performance when compared to silicon-based microsystems. The project’s multidisciplinary team is strategically set for integrating research with a plan for adding to the engineering curriculum, engaging with the local microelectronics industries, and supporting the national infrastructure and efforts for hybrid manufacturing of electronics.Devices and micros and microsystems for the Internet-of-Things are supposed to be deployed everywhere and to be accessed anytime from anywhere. These simple prerequisites imply significant challenges for the sustainability of the production, distribution, and operation of Internet-of-Things electronics. Notably, the necessary quantity of a microsystem requires the mass use of non-sustainable materials and expensive manufacturing processes. Moreover, the mass distribution of microsystems is tantamount to large scale pollution via electronics waster, if means for recapture, environmental integration, or recycling are not realized. In response to these challenges, this project will engineer sensing-communications nodes composed of metal-free, biodegradable materials, carbon-biological-organic-polymer devices and circuits, and enzymatic fuel cells. Citric acid-based elastomers and cellulosic nanocomposites will be developed for biodegradable elastomeric circuit boards and packaging. Low-power sensors and circuits will be developed from carbon, biological, organic, and polymer-based devices. The sensing-communications node will include an array of organic electrochemical transistors distributed across the biodegradable circuit boards to perform continuous monitoring of humidity, temperature, pH, and volatile organic compounds. The sensing-communications node will be powered by a modular biochemical fuel cell, which employs custom engineered direct electron transfer-type enzymes that convert eco-friendly fuel sources, e.g., glucose and lactate, to suitable electrical power. This completely metal-free sensing-communications node will be integrated, benchmarked against conventional commercial-off-the-shelf systems, and demonstrated in different simulated food storage and supply chain application scenarios.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
通过工程团队(Ascent)项目来应对系统挑战,将为可持续的微型和纳米电子开发提供一套技术。新兴的文学Internet和实现完全“联系”社会和基础设施的努力需要电子设备的大规模分配,并以可持续的方式进行此操作,需要开发环保电子材料,电路和电源。研究团队将研究材料,低功率电路和替代功率来源(即,对工程师可重新配置的无限制微型系统,可以使用替代功率来源运行)。这些系统(i)将完全由碳基材料组成,(ii)由生物衍生的电源操作,(iii)提供了局部环境指标的持续记录,并且(iv)在其操作寿命结束时实现了完全的生物降解或回收。新型材料科学,电路设计和生物燃料电池的结合将使下一代绿色电子产品可以以较低的成本产生的质量,在较大的尺度上,分布在我们的环境中,并且与硅基微系统相比,具有最小的生态影响,同时实现可比性的性能。该项目的多学科团队在战略上旨在将研究与计划增加工程课程,与当地的微电子行业进行互动,并支持国家基础架构以及电子产品的混合制造。Deptimeand The Overtime and Timper timert timper timper timper timper timper timper timper timpertime timper timper timpertime。这些简单的先决条件暗示着对电子产品的生产,分销和运营的可持续性面临重大挑战。值得注意的是,微型系统的必要数量需要大量使用不可持续的材料和昂贵的制造工艺。此外,如果没有实现重新捕获,环境整合或回收的方法,微系统的质量分布与通过电子废物的大规模污染相关。为了应对这些挑战,该项目将设计由无金属,可生物降解材料,碳生物 - 生物 - 有机 - 有机 - 聚合物设备和电路以及酶促燃料电池组成的传感器通信节点。基于柠檬酸的弹性体和纤维素纳米复合材料将用于可生物降解的弹性体电路板和包装。低功率传感器和电路将从碳,生物学,有机和聚合物的设备开发。感应传达节点将包括分布在可生物降解电路板上的一系列有机电化学晶体管,以连续监测湿度,温度,pH和挥发性有机化合物。传感通信节点将由模块化的生化燃料电池提供动力,该燃料电池可以定制直接电子传输型酶,这些酶将环保燃料源转化为葡萄糖和裂缝,以适合适当的电力。这个完全无金属的传感器通信节点将集成,针对常规的商业货架系统进行基准测试,并在不同的模拟食品存储和供应链应用程序方案中进行了证明。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来通过评估来获得的支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Biodegradable elastomeric circuit boards from citric acid-based polyesters
  • DOI:
    10.1038/s41528-023-00258-z
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    14.6
  • 作者:
    Brendan L. Turner;Jack Twiddy;Michael D. Wilkins;Srivatsan Ramesh;Katie Kilgour;Eleo Domingos;Olivia N
  • 通讯作者:
    Brendan L. Turner;Jack Twiddy;Michael D. Wilkins;Srivatsan Ramesh;Katie Kilgour;Eleo Domingos;Olivia N
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Daniele其他文献

Evaluating Bacterial Nanocellulose Interfaces for Recording Surface Biopotentials from Plants
评估细菌纳米纤维素界面以记录植物表面生物电势
  • DOI:
    10.3390/s24072335
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Reynolds;Michael D. Wilkins;Devon Martin;Matt Taggart;Kristina R. Rivera;Meral Tunc;Thomas Rufty;Edgar J. Lobaton;Alper Bozkurt;Michael Daniele
  • 通讯作者:
    Michael Daniele
The continuous 3 month operation of open circuit potential based glucose sensor employing direct electron transfer type FAD dependent glucose dehydrogenase
采用直接电子转移型 FAD 依赖性葡萄糖脱氢酶的基于开路电位的葡萄糖传感器的连续运行 3 个月
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Inyoung Lee;Junko Okuda-Shimazaki;Wakako Tsugawa;Kazunori Ikebukuro;Jeffrey E. Dick;Michael Daniele;Koji Sode
  • 通讯作者:
    Koji Sode

Michael Daniele的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Daniele', 18)}}的其他基金

Bio-MAPS: BioMolecular-Array Patterns for Precision Differentiation of Intestinal Stem Cells
Bio-MAPS:用于肠道干细胞精确分化的生物分子阵列模式
  • 批准号:
    2033997
  • 财政年份:
    2021
  • 资助金额:
    $ 149.99万
  • 项目类别:
    Standard Grant
CAREER: Reconfigurable Microfluidic-Microbalance Sensors to Monitor and Optimize the Performance of Microphysiological Models
职业:可重构微流体-微平衡传感器,用于监测和优化微生理模型的性能
  • 批准号:
    1846911
  • 财政年份:
    2019
  • 资助金额:
    $ 149.99万
  • 项目类别:
    Continuing Grant
NSF Workshop on Reconfigurable Sensor Systems Integrated with Artificial Intelligence and Data Harnessing to Enable Personalized Medicine
NSF 研讨会:可重构传感器系统与人工智能和数据利用相结合,实现个性化医疗
  • 批准号:
    1842348
  • 财政年份:
    2018
  • 资助金额:
    $ 149.99万
  • 项目类别:
    Standard Grant

相似海外基金

Reconfigurable Liquid-Metal RF Circuits and Antennas Using Electrical Actuation
使用电驱动的可重构液态金属射频电路和天线
  • 批准号:
    1807896
  • 财政年份:
    2018
  • 资助金额:
    $ 149.99万
  • 项目类别:
    Standard Grant
CAREER: Bioinspired Adaptively Reconfigurable Material Systems for Programmable and Autonomous Metal Ion Separations
职业:用于可编程和自主金属离子分离的仿生自适应可重构材料系统
  • 批准号:
    1724526
  • 财政年份:
    2017
  • 资助金额:
    $ 149.99万
  • 项目类别:
    Standard Grant
CAREER: Bioinspired Adaptively Reconfigurable Material Systems for Programmable and Autonomous Metal Ion Separations
职业:用于可编程和自主金属离子分离的仿生自适应可重构材料系统
  • 批准号:
    1552690
  • 财政年份:
    2016
  • 资助金额:
    $ 149.99万
  • 项目类别:
    Standard Grant
Reconfigurable end-effectors for Mass-Customisation of sheet metal
用于大规模定制钣金的可重构末端执行器
  • 批准号:
    131084
  • 财政年份:
    2013
  • 资助金额:
    $ 149.99万
  • 项目类别:
    Feasibility Studies
Reconfigurable optical add/drop multiplexer with a function of optical reamplification, retiming and reshaping
具有光再放大、重定时和整形功能的可重构光分插复用器
  • 批准号:
    20560334
  • 财政年份:
    2008
  • 资助金额:
    $ 149.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了