Collaborative Research: RI: AF: Small: Long-Term Impact of Fair Machine Learning under Strategic Individual Behavior
合作研究:RI:AF:小:战略性个人行为下公平机器学习的长期影响
基本信息
- 批准号:2202700
- 负责人:
- 金额:$ 25.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The development of Machine learning (ML) techniques have revolutionized society and enabled breakthroughs in various scientific fields. Despite the enormous social benefits, ML techniques have also caused ethical concerns when used to make decisions about humans. It has been evident that in many high-stakes applications, such as hiring, lending, criminal justice, and college admission, ML techniques may exhibit bias against disadvantaged or marginalized social groups or be vulnerable to individual strategic behavior. Recent studies have largely examined these as two separate issues in a static framework. However, the long-term impacts of ML techniques on the well-being of the population remain unclear. Since ML algorithms are deployed in a dynamic environment (i.e., individuals adapt their behaviors strategically and repeatedly as they interact with ML algorithms), ML developed in a static framework without considering human feedback effects may behave in an unanticipated and potentially harmful way. This project moves beyond static settings and aims to understand the long-term impacts of fair ML under dynamic human-ML interactions. Such an understanding is critical to ensure the trustworthiness of ML techniques and can be leveraged for designing effective interventions that promote long-term social welfare and equity; it may further help guide policymakers to design policies that better serve society. This project studies fairness problems in a sequential framework with humans repeatedly interacting with ML systems. Three key research questions will be addressed when investigating the long-term impacts of fair ML: (1) how to rigorously model individual strategic behavior and its impact on ML development; (2) how to validate and analyze the human behavioral model; and (3) what approaches can be taken to improve long-term human well-being? Integrating the knowledge from machine learning, stochastic control, game theory, and social sciences, this project will first establish an analytical framework that characterizes the complex sequential interactions between strategic individuals and ML. This framework could enable the rigorous analysis of the evolution of population dynamics and be further leveraged for developing effective interventions that improve social welfare and long-term equity. Finally, this project will conduct different analyses and experiments to examine the robustness and accuracy of the proposed framework and results.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习 (ML) 技术的发展彻底改变了社会,并在各个科学领域实现了突破。尽管机器学习技术具有巨大的社会效益,但在用于人类决策时也引起了伦理问题。很明显,在许多高风险应用中,例如招聘、贷款、刑事司法和大学录取,机器学习技术可能会对弱势或边缘化社会群体表现出偏见,或者容易受到个人战略行为的影响。最近的研究主要将这些作为静态框架中的两个独立问题进行研究。然而,机器学习技术对人类福祉的长期影响仍不清楚。由于 ML 算法部署在动态环境中(即,个人在与 ML 算法交互时策略性地、反复地调整其行为),因此在静态框架中开发的 ML 不考虑人类反馈影响可能会以意想不到的且潜在有害的方式运行。该项目超越了静态设置,旨在了解动态人机交互下公平机器学习的长期影响。这种理解对于确保机器学习技术的可信度至关重要,并且可用于设计促进长期社会福利和公平的有效干预措施;它可能进一步帮助指导政策制定者设计更好地服务社会的政策。该项目研究人类与机器学习系统反复交互的顺序框架中的公平问题。在调查公平机器学习的长期影响时,将解决三个关键研究问题:(1)如何严格建模个人战略行为及其对机器学习发展的影响; (2)如何验证和分析人类行为模型; (3)可以采取哪些方法来改善人类的长期福祉?该项目将整合机器学习、随机控制、博弈论和社会科学的知识,首先建立一个分析框架,描述战略个体和机器学习之间复杂的顺序交互。该框架可以对人口动态的演变进行严格分析,并进一步用于制定改善社会福利和长期公平的有效干预措施。最后,该项目将进行不同的分析和实验,以检验所提出的框架和结果的稳健性和准确性。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohammadmahdi Khaliligarekani其他文献
Mohammadmahdi Khaliligarekani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohammadmahdi Khaliligarekani', 18)}}的其他基金
Collaborative Research: FW-HTF-R: Future of Construction Workplace Health Monitoring
合作研究:FW-HTF-R:建筑工作场所健康监测的未来
- 批准号:
2301601 - 财政年份:2022
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-R: Future of Construction Workplace Health Monitoring
合作研究:FW-HTF-R:建筑工作场所健康监测的未来
- 批准号:
2222619 - 财政年份:2022
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
Collaborative Research: RI: AF: Small: Long-Term Impact of Fair Machine Learning under Strategic Individual Behavior
合作研究:RI:AF:小:战略性个人行为下公平机器学习的长期影响
- 批准号:
2301599 - 财政年份:2022
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
相似国自然基金
跨膜蛋白LRP5胞外域调控膜受体TβRI促钛表面BMSCs归巢、分化的研究
- 批准号:82301120
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Dectin-2通过促进FcεRI聚集和肥大细胞活化加剧哮喘发作的机制研究
- 批准号:82300022
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
藏药甘肃蚤缀β-咔啉生物碱类TβRI抑制剂的发现及其抗肺纤维化作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TβRI的UFM化修饰调控TGF-β信号通路和乳腺癌转移的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
内核区对流活动与云微物理过程对登陆中国台风快速增强(RI)的研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
相似海外基金
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
- 批准号:
2232298 - 财政年份:2023
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: RUI: Automated Decision Making for Open Multiagent Systems
协作研究:RI:中:RUI:开放多智能体系统的自动决策
- 批准号:
2312657 - 财政年份:2023
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312840 - 财政年份:2023
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Multilingual Long-form QA with Retrieval-Augmented Language Models
合作研究:RI:Medium:采用检索增强语言模型的多语言长格式 QA
- 批准号:
2312948 - 财政年份:2023
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
- 批准号:
2312956 - 财政年份:2023
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant