RII Track-4: NSF: Massively Parallel Graph Processing on Next-Generation Multi-GPU Supercomputers
RII Track-4:NSF:下一代多 GPU 超级计算机上的大规模并行图形处理
基本信息
- 批准号:2229394
- 负责人:
- 金额:$ 27.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Graph processing is essential in real-world applications such as bioinformatics and social network analysis. Many fundamental graph operations are compute-intensive, for which the PI has successfully developed a series of CPU-scalable graph processing systems following a novel task-based parallel paradigm called T-thinker. However, it is non-trivial to extend this success to a GPU-rich environment due to a much larger gap between IO bandwidth and computing power of GPUs, and due to the unique programming requirements for GPU programs to be scalable. This project will develop a new task-based distributed GPU framework, T-thinkerGPU, and implement three applications on top, including subgraph matching, dense subgraph mining, and frequent subgraph pattern mining. T-thinkerGPU will be tested on the Aurora supercomputer at Argonne National Laboratory (ANL) as well as UAB’s Cheaha supercomputer, and the implementation will exploit modern GPU features including atomic operations, unified shared memory, and dynamic parallelism. This work will establish a solid foundation for long-term collaboration with ANL towards the development of GPU-scalable HPC solutions for various scientific applications. The project will also train a GPU-programming workforce (including a PhD student who will also visit ANL) that is in urgent need in Alabama, and all the proposed tools will be open source.This Research Infrastructure Improvement Track-4 EPSCoR Research Fellows (RII Track-4) proposal would provide a fellowship to an Assistant professor and training for a graduate student at the University of Alabama at Birmingham (UAB). GPU supercomputers are increasingly being deployed in place of CPU supercomputers in the hope to benefit from not only significant performance improvement but also energy efficiency. Built on the success of task-based parallel paradigm, T-thinker, for scaling graph processing in a multi-CPU environment, this project aims to investigate novel task-based techniques to scale fundamental compute-intensive graph operations in a multi-GPU environment, especially the exascale Aurora supercomputer at ANL that is based on Intel GPUs. Specifically, the project will first investigate efficient representation schemes that encode and compress the input graph and intermediate subgraph results compactly to reduce memory footprint and enable coalesced memory access and data reuse in shared memory, such as hashed neighborhood signature and lossless pattern-based contraction. Secondly, the project will design GPU-friendly task-based algorithms for fundamental graph operations including subgraph matching, dense subgraph mining, and frequent subgraph pattern mining, to unleash the massive parallelism enabled by a multi-GPU environment like the Aurora supercomputer. Novel techniques will be investigated such as kernel-as-a-task execution model, a truly hybrid BFS-DFS task scheduling strategy, and several other GPU optimization approaches, which will be combined into a unified programming framework, T-thinkerGPU, with extendibility in mind to facilitate the development of GPU-scalable task-based algorithms for other graph operations in the future. Finally, the developed GPU programs will be extensively evaluated on Aurora (with Intel GPUs) and UAB’s Cheaha supercomputer (with Nvidia GPUs), using public benchmarks and scientific applications at ANL and UAB, and the code will be released on GitHub.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图在现实世界中必不可少的应用程序,例如生物信息学和社交网络分析。许多基本的图形操作都是计算密集型,为此,PI成功地开发了一系列CPU尺度的图形处理系统,遵循一种新型的基于任务的平行范式,称为T-Theminker。但是,由于IO带宽和GPU的计算能力之间的差距更大,并且由于GPU程序具有可扩展的独特编程要求,因此将这一成功扩展到GPU充足的环境是不足的。该项目将开发一个新的基于任务的分布式GPU框架T-ThinkergPU,并在顶部实现三个应用程序,包括子图匹配,密集的子图挖掘和经常的子图模式挖掘。 T-ThinkergPU将在Argonne National Laboratory(ANL)的Aurora超级计算机以及UAB的Cheaha SuperComputer上进行测试,并且该实施将利用现代GPU功能,包括原子操作,统一共享内存和动态平行性。这项工作将为与ANL的长期合作建立坚实的基础,以开发为各种科学应用的GPU-Scalable HPC解决方案。 The project will also train a GPU-programming workforce (including a PhD student who will also visit ANL) that is in urgent need in Alabama, and all the proposed tools will be open source.This Research Infrastructure Improvement Track-4 EPSCoR Research Fellows (RII Track-4) proposal would provide a fellowship to an Assistant Professor and training for a graduate student at the University of Alabama at Birmingham (UAB). GPU超级计算机越来越多地由CPU超级计算机部署,希望不仅可以从大幅提高性能,而且可以从能源效率中受益。该项目旨在研究基于任务的并行范式T-TheNINGER,用于在多CPU环境中扩展图形处理,该项目旨在调查基于任务的新技术,以在多GPU环境中缩放基本的计算密集型图形操作,尤其是Exascale Aurora Aurora SuperComputer,尤其是基于Intel GPU的ANL。具体而言,该项目将首先调查有效的表示方案,该方案编码和压缩输入图和中间子图结果,以减少内存足迹,并在共享内存中启用合并的内存访问和数据再利用,例如Hashed邻里签名和无损模式的基于模式的合同。其次,该项目将设计基于GPU的基于任务的算法,用于基本图形操作,包括子图匹配,密集的子图挖掘和经常的子图模式挖掘,以释放由Aurora SuperCutiter等多GPU环境启用的大规模平行性。新颖的技术将进行研究,例如内核-AS-A任务执行模型,真正的混合BFS-DFS任务调度策略以及其他几种GPU优化方法,这些方法将组合为统一的编程框架,T-ThinkergPU,并在基于GPU-Scalable Algsable Algorith的开发方面要有更大的困难,以实现更大的困难,以实现GPU-Scalable Algers的开发。最后,将使用ANL和UAB上的公共基准和科学应用,将对开发的GPU计划进行广泛评估,并使用UAB的Cheaha超级计算机(与NVIDIA GPU一起)进行广泛评估,该代码将在GitHub上发布,以评估NSF的Intortair Industriun Induction of Fielding of Fielder,该奖项将在ANL和UAB上进行公共基准和科学应用。 标准。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Faster Depth-First Subgraph Matching on GPUs
GPU 上更快的深度优先子图匹配
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Yuan, Lyuheng;Yan, Da;Han, Jiao;Ahmad, Akhlaque;Zhou, Yang;Jiang, Zhe
- 通讯作者:Jiang, Zhe
T-FSM: A Task-Based System for Massively Parallel Frequent Subgraph Pattern Mining from a Big Graph
- DOI:10.1145/3588928
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Lyuheng Yuan;Da Yan;Wenwen Qu;Saugat Adhikari;J. Khalil;Cheng Long;Xiaoling Wang
- 通讯作者:Lyuheng Yuan;Da Yan;Wenwen Qu;Saugat Adhikari;J. Khalil;Cheng Long;Xiaoling Wang
G2-AIMD: A Memory-Efficient Subgraph-Centric Framework for Efficient Subgraph Search on GPUs
G2-AIMD:一种以内存高效的子图为中心的框架,用于在 GPU 上进行高效的子图搜索
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Yuan, Lyuheng;Ahmad, Akhlaque;Yan, Da;Han, Jiao;Adhikari, Saugat;Yu, Xiaodong;Zhou, Yang
- 通讯作者:Zhou, Yang
FSM-Explorer: An Interactive Tool for Frequent Subgraph Pattern Mining from a Big Graph
FSM-Explorer:用于从大图中挖掘频繁子图模式的交互式工具
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Khalil, Jalal;Yan, Da;Yuan, Lyuheng;Han, Jiao;Adhikari Saugat;Long Cheng;Zhou Yang
- 通讯作者:Zhou Yang
Accelerating k-Core Decomposition by a GPU
- DOI:10.1109/icde55515.2023.00142
- 发表时间:2023-04
- 期刊:
- 影响因子:0
- 作者:Akhlaque Ahmad;Lyuheng Yuan;Da Yan;Guimu Guo;Jieyang Chen;Chengcui Zhang
- 通讯作者:Akhlaque Ahmad;Lyuheng Yuan;Da Yan;Guimu Guo;Jieyang Chen;Chengcui Zhang
共 6 条
- 1
- 2
Da Yan其他文献
A high-fidelity zoning and characterization approach for building energy models in urban building energy modeling
城市建筑能源建模中建筑能源模型的高保真分区和表征方法
- DOI:10.26868/25222708.2023.143510.26868/25222708.2023.1435
- 发表时间:20232023
- 期刊:
- 影响因子:0
- 作者:Hanyun Wang;Zhaoru Liu;Changxiang Xu;Jiangjun Tan;Tao Wang;Da YanHanyun Wang;Zhaoru Liu;Changxiang Xu;Jiangjun Tan;Tao Wang;Da Yan
- 通讯作者:Da YanDa Yan
District household electricity consumption pattern analysis based on auto-encoder algorithm
基于自编码算法的地区家庭用电模式分析
- DOI:10.1088/1757-899x/609/7/07202810.1088/1757-899x/609/7/072028
- 发表时间:2019-102019-10
- 期刊:
- 影响因子:0
- 作者:Yuan Jin;Da Yan;Xingxing Zhang;Mengjie Han;Xuyuan Kang;Jingjing An;Hongsan SunYuan Jin;Da Yan;Xingxing Zhang;Mengjie Han;Xuyuan Kang;Jingjing An;Hongsan Sun
- 通讯作者:Hongsan SunHongsan Sun
Spatial-Logic-Aware Weakly Supervised Learning for Flood Mapping on Earth Imagery
地球图像洪水测绘的空间逻辑感知弱监督学习
- DOI:10.1609/aaai.v38i20.3025310.1609/aaai.v38i20.30253
- 发表时间:20242024
- 期刊:
- 影响因子:0
- 作者:Zelin Xu;Tingsong Xiao;Wenchong He;Yu Wang;Zhe Jiang;Shigang Chen;Yiqun Xie;Xiaowei Jia;Da Yan;Yang ZhouZelin Xu;Tingsong Xiao;Wenchong He;Yu Wang;Zhe Jiang;Shigang Chen;Yiqun Xie;Xiaowei Jia;Da Yan;Yang Zhou
- 通讯作者:Yang ZhouYang Zhou
A district-level building electricity use profile simulation model based on probability distribution inferences
- DOI:10.1016/j.scs.2024.10582210.1016/j.scs.2024.105822
- 发表时间:2024-11-152024-11-15
- 期刊:
- 影响因子:
- 作者:Xuyuan Kang;Hongyin Chen;Zhenlan Dou;Xiao Wang;Zhaoru Liu;Chunyan Zhang;Kunqi Jia;Da YanXuyuan Kang;Hongyin Chen;Zhenlan Dou;Xiao Wang;Zhaoru Liu;Chunyan Zhang;Kunqi Jia;Da Yan
- 通讯作者:Da YanDa Yan
Lighting System Control in Office Building Using Occupancy Prediction Based on Historical Occupied Ratio
基于历史占用率的占用预测的办公楼照明系统控制
- DOI:10.1088/1755-1315/238/1/01200910.1088/1755-1315/238/1/012009
- 发表时间:2019-032019-03
- 期刊:
- 影响因子:0
- 作者:Yuan Jin;Da Yan;Hongsan SunYuan Jin;Da Yan;Hongsan Sun
- 通讯作者:Hongsan SunHongsan Sun
共 19 条
- 1
- 2
- 3
- 4
Da Yan的其他基金
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:24144742414474
- 财政年份:2024
- 资助金额:$ 27.56万$ 27.56万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
- 批准号:24141852414185
- 财政年份:2024
- 资助金额:$ 27.56万$ 27.56万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:23131922313192
- 财政年份:2023
- 资助金额:$ 27.56万$ 27.56万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
- 批准号:21064612106461
- 财政年份:2021
- 资助金额:$ 27.56万$ 27.56万
- 项目类别:Standard GrantStandard Grant
CRII: OAC: Scalable Cyberinfrastructure for Big Graph and Matrix/Tensor Analytics
CRII:OAC:用于大图和矩阵/张量分析的可扩展网络基础设施
- 批准号:17554641755464
- 财政年份:2018
- 资助金额:$ 27.56万$ 27.56万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
石羊河上游径流水源追踪量化的模拟研究
- 批准号:42301153
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向复杂场景的说话人追踪关键技术研究
- 批准号:62306029
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单波段机载LiDAR测深的瞬时海面确定及光线追踪
- 批准号:42304051
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
用户兴趣迁移现象下基于图神经网络的舆情追踪技术研究
- 批准号:62302199
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于量子电压动态追踪补偿的精密磁通测量方法研究
- 批准号:52307021
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
- 批准号:23270252327025
- 财政年份:2024
- 资助金额:$ 27.56万$ 27.56万
- 项目类别:Standard GrantStandard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
- 批准号:23272062327206
- 财政年份:2024
- 资助金额:$ 27.56万$ 27.56万
- 项目类别:Standard GrantStandard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
- 批准号:23272322327232
- 财政年份:2024
- 资助金额:$ 27.56万$ 27.56万
- 项目类别:Standard GrantStandard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
- 批准号:23272672327267
- 财政年份:2024
- 资助金额:$ 27.56万$ 27.56万
- 项目类别:Standard GrantStandard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:23273462327346
- 财政年份:2024
- 资助金额:$ 27.56万$ 27.56万
- 项目类别:Standard GrantStandard Grant