FMSG: ECO: Towards Circular Manufacturing of Hydrocarbon Feedstocks from Plastic Waste
FMSG:ECO:利用塑料废物循环制造碳氢化合物原料
基本信息
- 批准号:2229168
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Plastics present our society with a complex dilemma. We can efficiently and inexpensively produce a fantastic array of polymer products, yet the resulting waste is one of the greatest environmental challenges of our time. It also presents an enormous opportunity for manufacturing; there are literally millions of tons of reduced carbon feedstocks going to landfills and waterways every year. If our plastic waste could be converted into a more processible form and we if we could find markets large enough to accommodate the product materials, we may unlock a wide range of new manufacturing opportunities. The modern petrochemical industry is one of the few markets large enough to accommodate our annual plastic waste. Re-integrating waste plastic into the petrochemical supply chain would take advantage of enormous economies of scale and develop a circular plastics economy while simultaneously reducing our annual petroleum consumption. This project seeks to address this problem by developing the fundamental chemistry, engineering, and economics needed to convert waste plastic into “poly-crude”, a material that can be dropped into the existing petrochemical supply chain. A complementary techno-economic analysis will help direct the project towards economically viable products and process considerations. This impact is further buoyed by an integrated workforce development plan that aims to broaden participation by recruiting future scientists and engineers from underrepresented groups, while also providing interdisciplinary research and leadership training that will ensure their success in future manufacturing roles. Through this fundamental science, we will help to train a wide range of the future workforce (graduate students, undergraduates, and high school students) in the technical and critical thinking skills necessary for 21st century manufacturing. This work seeks to develop the fundamental chemistry and engineering to help develop a plastics manufacturing platform by which plastic waste is converted to valuable chemical feedstocks. Benefits include alleviating demand on natural petrochemical resources, enabling future manufacturing based upon a circular plastics economy, and addressing critical societal, environmental, and economic needs. Catalytic methods using polymer melts are encumbered by slow diffusion and process inefficiencies associated with batch reactors. This project aims to elucidate the fundamental thermodynamic factors inherent in competitive transport and size-selective adsorption of polyolefins on metal oxide catalysts. Using (i) size-specific polyolefins, (ii) neutron scattering techniques, and (iii) competitive adsorption measurements in flow reactors, we will develop adsorption models that will help us probe the deeply interconnected polymer-solvent-surface interactions that govern competitive adsorption in these systems and drive polymer adsorption from solution to favor longer chain polymers. This will, in turn, be used to improve both catalytic activity and selectivity, as it will provide a means of getting around critical mass transport barriers by dissolving polyolefins in appropriate hydrocarbon solvents and employing flow reactors to study polyolefin adsorption onto catalyst surfaces from solution. Isotopic substitution and advanced neutron scattering techniques to distinguish between different polymers and solvents provide compelling advantages. Understanding these interrelated factors will allow us to develop the fundamental knowledge necessary to design processes (temperature, solvent, catalyst) that minimize the production of low-value products during catalytic hydrocracking of plastic waste streams. By controlling these parameters, we postulate selective polymer adsorption on a catalytic surface can be intelligently biased to control the product distribution. This Future Manufacturing award was supported by co-funding from the Chemical, Biological, Environmental Engineering and Transport Systems and the Civil, Mechanical and Manufacturing Innovation Divisions in the Directorate for Engineering and the Division of Chemistry in the Directorate for Mathematical and Physical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
塑料给我们的社会带来了复杂的困境,我们可以高效、廉价地生产一系列出色的聚合物产品,但由此产生的废物是我们这个时代最大的环境挑战之一,它也为制造业提供了巨大的机会。如果我们的塑料废物能够转化为更易于加工的形式,并且我们能够找到足够大的市场来容纳这些产品材料,那么我们每年都会有大量的碳减少原料进入垃圾填埋场和水道,我们可能会开启一系列新的制造业。现代石化工业就是其中之一。将废塑料重新纳入石化供应链将利用巨大的规模经济并发展循环塑料经济,同时减少我们的年度石油消耗。这个问题是由将废塑料转化为“聚合原油”所需的基础化学、工程和经济学所引起的,“聚合原油”是一种可以纳入现有石化供应链的材料,补充性的技术经济分析将有助于指导该项目走向经济化。可行的产品和流程综合劳动力发展计划进一步增强了这种影响,该计划旨在通过从代表性不足的群体中招募未来的科学家和工程师来扩大参与,同时还提供跨学科研究和领导力培训,以确保他们通过这一基础科学在未来的制造业角色中取得成功。 ,我们将帮助培养广泛的未来劳动力(研究生、本科生和高中生)掌握 21 世纪制造业所需的技术和批判性思维技能。这项工作旨在发展基础化学和工程,以帮助发展。一个塑料制造平台塑料废物被转化为有价值的化学原料,其好处包括减轻对天然石化资源的需求,实现基于循环塑料经济的未来制造,以及解决关键的社会、环境和经济需求。该项目旨在阐明金属氧化物催化剂上聚烯烃竞争传输和尺寸选择性吸附的基本热力学固有因素。尺寸特定的聚烯烃,(ii) 中子散射技术,以及 (iii) 流动反应器中的竞争吸附测量,我们将开发吸附模型,帮助我们探索控制这些系统中竞争吸附的深度互连的聚合物-溶剂-表面相互作用,以及驱动聚合物从溶液中吸附以有利于长链聚合物,这反过来将用于提高催化活性和选择性,因为它将提供一种通过将聚烯烃溶解在适当的溶液中来绕过关键的质量传输障碍的方法。碳氢化合物溶剂和使用流动反应器研究聚烯烃从溶液中吸附到催化剂表面以及区分不同聚合物和溶剂的先进中子散射技术提供了令人信服的优势,了解这些相互关联的因素将使我们能够掌握设计工艺所需的基础知识。 (温度、溶剂、催化剂),最大限度地减少塑料废物流催化加氢裂化过程中低价值产品的产生。通过控制这些参数,我们假设可以在催化表面上选择性地吸附聚合物。该未来制造奖得到了化学、生物、环境工程和运输系统以及工程理事会土木、机械和制造创新部门以及化学部门的共同资助。数学和物理科学理事会。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bert Chandler其他文献
Bert Chandler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bert Chandler', 18)}}的其他基金
Collaborative Research: Controlling Metal-Oxide Interface Chemistry for New C-H Activation Catalysts
合作研究:控制新型 C-H 活化催化剂的金属-氧化物界面化学
- 批准号:
2329470 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Tuning Hydrogen Mobility on Au/Spinel Catalysts to Develop the Isotopic Kinetic Resolution of H2 and D2
合作研究:调节 Au/尖晶石催化剂上的氢迁移率以开发 H2 和 D2 的同位素动力学分辨率
- 批准号:
2102525 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
RUI: Preparation and Kinetic Characterization of New Bimetallic Au-M Selective Hydrogenation Catalysts
RUI:新型双金属Au-M选择性加氢催化剂的制备及动力学表征
- 批准号:
1566301 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Water-Assisted Oxygen Insertion Reactions Over Supported Gold Catalysts
负载型金催化剂上的水辅助氧插入反应
- 批准号:
1465148 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
RUI: Preparation and Characterization of New Heterogeneous Bimetallic Au-M Catalysts for Selective Oxidations and Hydrogenations
RUI:用于选择性氧化和加氢的新型多相双金属 Au-M 催化剂的制备和表征
- 批准号:
1300619 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
RUI: Quantifying Electron Donation in Metal-Support Interactions utilizing CO Adsorption Studies and Hammet Relationships for Catalyzed Organic Transformations
RUI:利用 CO 吸附研究和催化有机转化的 Hammet 关系量化金属-载体相互作用中的电子供给
- 批准号:
1160217 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
RUI: Preparation and Characterization of Dendrimer Templated Au-M Nanoparticles and Catalysts
RUI:树枝状聚合物模板 Au-M 纳米粒子和催化剂的制备和表征
- 批准号:
1012395 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Chemical and Catalytic Characterization of Dendrimer Templated Bimetallic Nanoparticles
职业:树枝状聚合物模板双金属纳米颗粒的化学和催化表征
- 批准号:
0449549 - 财政年份:2005
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
MRI: Acquisition of a Chemisorption-Physisorption Surface Area and Pore Size Analyzer for the Characterization of New Catalytic and Polymeric Materials at Trinity University
MRI:三一大学购买化学吸附-物理吸附表面积和孔径分析仪,用于表征新型催化和聚合材料
- 批准号:
0116731 - 财政年份:2001
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
典型热带生态系统大气零价汞源汇格局变化及机理解析
- 批准号:42377255
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
耦合生态风险与关键生态系统服务功能的青藏高原自然保护地格局优化研究
- 批准号:32301380
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高强度人类活动下流域生态系统安全机制与景观调控
- 批准号:32330065
- 批准年份:2023
- 资助金额:215 万元
- 项目类别:重点项目
西北不同生态系统下气溶胶对边界层辐射平衡的影响及模拟研究
- 批准号:42375085
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
价值视角下软件服务生态系统治理体系和关键技术
- 批准号:62372323
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Development of a novel eco-friendly process for gold extraction from refractory ores: Application of microencapsulation technique to gold hydrometallurgical process towards achieving carbon neutrality
开发一种从难熔矿石中提取金的新型环保工艺:微胶囊技术在金湿法冶金工艺中的应用,以实现碳中和
- 批准号:
24K17639 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Production and utilization of environmentally friendly Bio-Eco-products towards Transport4.0
生产和利用环保生物生态产品迈向交通4.0
- 批准号:
EP/X02279X/1 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Fellowship
Developing frameworks for eco-directed sustainable prescribing: Towards reducing environmental pollution from healthcare practices
制定生态导向的可持续处方框架:减少医疗保健实践中的环境污染
- 批准号:
MR/X011704/1 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Sympoietic Eco-Plexis: A post-digital approach towards ecologically crafted textile architecture
Sympoietic Eco-Plexis:生态纺织建筑的后数字方法
- 批准号:
2712563 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Studentship
Coating formulations of proprietary amine-functionalized polyethylene combined with polytetrafluoroethylene towards formation of eco-friendly high-performance marine coatings
专有的胺官能化聚乙烯与聚四氟乙烯相结合的涂料配方,可形成环保的高性能船舶涂料
- 批准号:
548820-2020 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Idea to Innovation