FMSG: ECO: Towards Circular Manufacturing of Hydrocarbon Feedstocks from Plastic Waste

FMSG:ECO:利用塑料废物循环制造碳氢化合物原料

基本信息

  • 批准号:
    2229168
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

Plastics present our society with a complex dilemma. We can efficiently and inexpensively produce a fantastic array of polymer products, yet the resulting waste is one of the greatest environmental challenges of our time. It also presents an enormous opportunity for manufacturing; there are literally millions of tons of reduced carbon feedstocks going to landfills and waterways every year. If our plastic waste could be converted into a more processible form and we if we could find markets large enough to accommodate the product materials, we may unlock a wide range of new manufacturing opportunities. The modern petrochemical industry is one of the few markets large enough to accommodate our annual plastic waste. Re-integrating waste plastic into the petrochemical supply chain would take advantage of enormous economies of scale and develop a circular plastics economy while simultaneously reducing our annual petroleum consumption. This project seeks to address this problem by developing the fundamental chemistry, engineering, and economics needed to convert waste plastic into “poly-crude”, a material that can be dropped into the existing petrochemical supply chain. A complementary techno-economic analysis will help direct the project towards economically viable products and process considerations. This impact is further buoyed by an integrated workforce development plan that aims to broaden participation by recruiting future scientists and engineers from underrepresented groups, while also providing interdisciplinary research and leadership training that will ensure their success in future manufacturing roles. Through this fundamental science, we will help to train a wide range of the future workforce (graduate students, undergraduates, and high school students) in the technical and critical thinking skills necessary for 21st century manufacturing. This work seeks to develop the fundamental chemistry and engineering to help develop a plastics manufacturing platform by which plastic waste is converted to valuable chemical feedstocks. Benefits include alleviating demand on natural petrochemical resources, enabling future manufacturing based upon a circular plastics economy, and addressing critical societal, environmental, and economic needs. Catalytic methods using polymer melts are encumbered by slow diffusion and process inefficiencies associated with batch reactors. This project aims to elucidate the fundamental thermodynamic factors inherent in competitive transport and size-selective adsorption of polyolefins on metal oxide catalysts. Using (i) size-specific polyolefins, (ii) neutron scattering techniques, and (iii) competitive adsorption measurements in flow reactors, we will develop adsorption models that will help us probe the deeply interconnected polymer-solvent-surface interactions that govern competitive adsorption in these systems and drive polymer adsorption from solution to favor longer chain polymers. This will, in turn, be used to improve both catalytic activity and selectivity, as it will provide a means of getting around critical mass transport barriers by dissolving polyolefins in appropriate hydrocarbon solvents and employing flow reactors to study polyolefin adsorption onto catalyst surfaces from solution. Isotopic substitution and advanced neutron scattering techniques to distinguish between different polymers and solvents provide compelling advantages. Understanding these interrelated factors will allow us to develop the fundamental knowledge necessary to design processes (temperature, solvent, catalyst) that minimize the production of low-value products during catalytic hydrocracking of plastic waste streams. By controlling these parameters, we postulate selective polymer adsorption on a catalytic surface can be intelligently biased to control the product distribution. This Future Manufacturing award was supported by co-funding from the Chemical, Biological, Environmental Engineering and Transport Systems and the Civil, Mechanical and Manufacturing Innovation Divisions in the Directorate for Engineering and the Division of Chemistry in the Directorate for Mathematical and Physical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
塑料给我们的社会带来了复杂的困境。我们可以有效且廉价地生产出奇妙的聚合物产品,但是产生的废物是当时最大的环境挑战之一。它还为制造业提供了巨大的机会;每年,每年有数百万吨碳原料减少到垃圾填埋场。如果我们的塑料废物可以转换为更便宜的形式,如果我们可以找到足够大的市场以适应产品材料,我们可能会解锁各种新的制造机会。现代石化行业是足以容纳我们年度塑料废物的少数市场之一。将废物塑料重新整合到石化供应链中,将利用巨大的规模经济,发展循环塑料经济,同时减少我们的年度石油消费。该项目旨在通过开发基本的化学,工程和经济学来解决此问题,以将废塑料转化为“多污染”,该材料可以滴入现有的石化供应链中。完整的技术经济分析将有助于将项目引向经济上可行的产品和过程注意事项。一项综合劳动力发展计划进一步提高了这种影响,该计划旨在通过招募人为不足的群体招募未来的科学家和工程师来扩大参与,同时还提供跨学科研究和领导培训,以确保他们在未来的制造角色中的成功。通过这项基本科学,我们将帮助培训21世纪制造所需的技术和批判性思维技能,以培训各种未来的员工(研究生,本科生和高中生)。这项工作旨在开发基本的化学和工程,以帮助开发塑料制造平台,通过该平台将塑料废物转换为有价值的化学原料。收益包括减轻对天然石化资源的需求,基于循环塑料经济实现未来的制造,并满足批判性的社会,环境和经济需求。使用聚合物熔体的催化方法是由与批处理反应器相关的缓慢扩散和过程无效的效率。 This project aims to Using (i) size-specific polyolefins, (ii) neutron scattering techniques, and (iii) competitive addsorption measurements in flow reactors, we will develop addsorption models that will help us probe the deeply interconnected polymer-solvent-surface interactions that govern competitive addsorption in these systems and drive polymer addsorption from Solution to favor longer chain polymers.反过来,这将用于提高催化活性和选择性,因为它将提供一种通过将聚烯烃溶解在适当的碳氢化合物溶液中,并采用流动反应器来研究聚油蛋白,从而为催化剂表面增加溶液中的催化反应器,从而提供一种方法。同位素取代和高级中子散射技术以区分不同的聚合物和解决方案提供了令人信服的优势。了解这些相互关联的因素将使我们能够开发出设计过程(温度,溶剂,催化剂)所需的基本知识,从而最大程度地减少塑料废物流的催化加氢裂缝期间低价值产物的产生。通过控制这些参数,我们假设在催化表面上的选择性聚合物添加剂可以智能地偏置以控制产品分布。 This Future Manufacturing award was supported by co-funding from the Chemical, Biological, Environmental Engineering and Transport Systems and the Civil, Mechanical and Manufacturing Innovation Divisions in the Directorate for Engineering and the Division of Chemistry in the Directorate for Mathematical and Physical Sciences.This award reflects NSF's statutory mission and has been deemed precious of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bert Chandler其他文献

Bert Chandler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bert Chandler', 18)}}的其他基金

Collaborative Research: Controlling Metal-Oxide Interface Chemistry for New C-H Activation Catalysts
合作研究:控制新型 C-H 活化催化剂的金属-氧化物界面化学
  • 批准号:
    2329470
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Tuning Hydrogen Mobility on Au/Spinel Catalysts to Develop the Isotopic Kinetic Resolution of H2 and D2
合作研究:调节 Au/尖晶石催化剂上的氢迁移率以开发 H2 和 D2 的同位素动力学分辨率
  • 批准号:
    2102525
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
RUI: Preparation and Kinetic Characterization of New Bimetallic Au-M Selective Hydrogenation Catalysts
RUI:新型双金属Au-M选择性加氢催化剂的制备及动力学表征
  • 批准号:
    1566301
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Water-Assisted Oxygen Insertion Reactions Over Supported Gold Catalysts
负载型金催化剂上的水辅助氧插入反应
  • 批准号:
    1465148
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
RUI: Preparation and Characterization of New Heterogeneous Bimetallic Au-M Catalysts for Selective Oxidations and Hydrogenations
RUI:用于选择性氧化和加氢的新型多相双金属 Au-M 催化剂的制备和表征
  • 批准号:
    1300619
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
RUI: Quantifying Electron Donation in Metal-Support Interactions utilizing CO Adsorption Studies and Hammet Relationships for Catalyzed Organic Transformations
RUI:利用 CO 吸附研究和催化有机转化的 Hammet 关系量化金属-载体相互作用中的电子供给
  • 批准号:
    1160217
  • 财政年份:
    2012
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
RUI: Preparation and Characterization of Dendrimer Templated Au-M Nanoparticles and Catalysts
RUI:树枝状聚合物模板 Au-M 纳米粒子和催化剂的制备和表征
  • 批准号:
    1012395
  • 财政年份:
    2010
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Chemical and Catalytic Characterization of Dendrimer Templated Bimetallic Nanoparticles
职业:树枝状聚合物模板双金属纳米颗粒的化学和催化表征
  • 批准号:
    0449549
  • 财政年份:
    2005
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of a Chemisorption-Physisorption Surface Area and Pore Size Analyzer for the Characterization of New Catalytic and Polymeric Materials at Trinity University
MRI:三一大学购买化学吸附-物理吸附表面积和孔径分析仪,用于表征新型催化和聚合材料
  • 批准号:
    0116731
  • 财政年份:
    2001
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

大气CO2经纬向非均匀性对未来净生态系统生产力影响的数值模拟研究
  • 批准号:
    42175142
  • 批准年份:
    2021
  • 资助金额:
    57.00 万元
  • 项目类别:
    面上项目
大气CO2经纬向非均匀性对未来净生态系统生产力影响的数值模拟研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
福寿螺对盐度胁迫的适应性进化机制及向华南沿海咸水湿地生境入侵的潜力
  • 批准号:
    31870525
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
环境变化下潜流层底栖动物的垂向分布变化和响应机制
  • 批准号:
    51809086
  • 批准年份:
    2018
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
南海叶绿素垂向分布的遥感估算及其在中尺度涡生态效应研究中的应用
  • 批准号:
    41876200
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of a novel eco-friendly process for gold extraction from refractory ores: Application of microencapsulation technique to gold hydrometallurgical process towards achieving carbon neutrality
开发一种从难熔矿石中提取金的新型环保工艺:微胶囊技术在金湿法冶金工艺中的应用,以实现碳中和
  • 批准号:
    24K17639
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Production and utilization of environmentally friendly Bio-Eco-products towards Transport4.0
生产和利用环保生物生态产品迈向交通4.0
  • 批准号:
    EP/X02279X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Fellowship
Developing frameworks for eco-directed sustainable prescribing: Towards reducing environmental pollution from healthcare practices
制定生态导向的可持续处方框架:减少医疗保健实践中的环境污染
  • 批准号:
    MR/X011704/1
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Sympoietic Eco-Plexis: A post-digital approach towards ecologically crafted textile architecture
Sympoietic Eco-Plexis:生态纺织建筑的后数字方法
  • 批准号:
    2712563
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
Coating formulations of proprietary amine-functionalized polyethylene combined with polytetrafluoroethylene towards formation of eco-friendly high-performance marine coatings
专有的胺官能化聚乙烯与聚四氟乙烯相结合的涂料配方,可形成环保的高性能船舶涂料
  • 批准号:
    548820-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Idea to Innovation
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了