Collaborative Research: AMPS Stochastic Algorithms for Early Detection and Risk Prediction of Hidden Contingencies in Modern Power Systems
合作研究:用于现代电力系统中隐藏突发事件的早期检测和风险预测的 AMPS 随机算法
基本信息
- 批准号:2229109
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Modern power systems (MPS) are complex systems involving conventional and renewable generators, smart distribution networks, and advanced information exchanges. High penetration of random low-inertia renewable energy sources, increased natural disasters such as the 2021 Winter storm Uri, and unprecedented man-made cyber-physical attacks have posed a threat to the reliability and security of MPS. Several cascading failures in MPS started with smaller undetected contingencies such as California's wildfires (e.g., Camp Creek Fire, Zogg Fire, and Dixie Fire) caused by equipment failures. Smaller contingency events, particularly on the distribution side of the grid, may not be directly detected. This project focuses on the early detection and risk prediction of hidden contingencies in MPS. The research fits within efforts to enhance the resilience of the U.S. power grid and move toward carbon-free energy infrastructure. Therefore, it has broader impacts on the carbon-free economy and social welfare. This project will also enhance teaching, training, and learning in mathematics and statistics, renewable energy, smart grids, and green technologies. The team plans to develop new courses for undergraduate and graduate students to facilitate the training of next-generation scientists and engineers. Every effort will be made to promote the participation of underrepresented students in the research project.This research project introduces a novel framework of stochastic prediction, estimation, and early detection (SPEED) for MPS. Covering a broad range of cyber-physical contingencies (CPC), this research will have the following distinct and novel aims and outcomes. First, the project introduces a new stochastic hybrid system (SHS) model, consisting of continuous dynamics and discrete events. Second, the project will develop new estimation and prediction computational methods. Starting from the Wonham filter for hidden Markov chains, to detect discrete jump changes, this research will focus on finding more computationally feasible schemes. Furthermore, rates of convergence of the algorithms will be obtained, and extensive numerical experiments will be performed. Third, fundamental concepts such as joint observability will be introduced. New estimation algorithms will be developed for joint estimation and prediction of CPC in SHS. Fourth, since early and quick detection of abrupt changes is vitally important for the risk management of MPS, this project will provide a new computable scheme based on Markov chain approximation for optimal stopping and will quantitatively predict risks of potential near-future cascading CPC. Fifth, evaluation and validation of the theoretical findings will be conducted through utility-level operational data, large-scale power grid simulations, and hardware-in-the-loop emulation on a microgrid. The synthetic operational and summary data of the distribution power grids and transmission systems will be incorporated into the validation and evaluation of the study.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代电力系统(MPS)是涉及常规和可再生发电机,智能分销网络和高级信息交换的复杂系统。随机低惯性可再生能源的高渗透,诸如2021年冬季风暴URI之类的自然灾害以及前所未有的人造网络物理攻击对MPS的可靠性和安全构成了威胁。国会议员的几次级联失败始于较小的未被发现的突发事件,例如加利福尼亚的野火(例如Camp Creek Fire,Zogg Fire和Dixie Fire)由设备故障引起。可能无法直接检测到较小的应急事件,特别是在网格的分布侧。该项目重点介绍了国会议员中隐藏意外情况的早期发现和风险预测。该研究符合增强美国电网的弹性并朝着无碳能源基础设施发展的努力。因此,它对无碳经济和社会福利产生了更大的影响。该项目还将增强数学和统计,可再生能源,智能电网和绿色技术的教学,培训和学习。该团队计划为本科和研究生开发新课程,以促进下一代科学家和工程师的培训。将尽一切努力促进代表性不足的学生参与研究项目。本研究项目介绍了一个新颖的随机预测,估计和早期检测(速度)(速度)的新框架。该研究涵盖了广泛的网络物理意外事件(CPC),将具有以下独特的新颖目标和结果。首先,该项目引入了一个新的随机混合系统(SHS)模型,该模型由连续的动态和离散事件组成。其次,该项目将开发新的估计和预测计算方法。从隐藏的马尔可夫链的Wonham滤镜开始,要检测离散的跳跃变化,这项研究将着重于寻找更多计算可行的方案。此外,将获得算法的收敛速率,并将进行广泛的数值实验。第三,将引入基本概念,例如联合可观察性。将开发新的估计算法,以用于SHS中CPC的联合估计和预测。 第四,由于对突然变化的早期和快速检测对于MPS的风险管理至关重要,因此该项目将基于马尔可夫链近似值提供新的可计算方案,以实现最佳停止,并将定量预测潜在的近乎未能的级联CPC的风险。第五,理论发现的评估和验证将通过公用事业级的操作数据,大规模的电网模拟以及微电网上的硬件仿真进行。分配功率电网和传输系统的合成操作和摘要数据将纳入研究的验证和评估中。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响来通过评估来获得支持的。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning-Based Distributed Optimal Power Sharing And Frequency Control Under Cyber Contingencies
- DOI:10.2139/ssrn.4265549
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:S. Xie;M. Nazari;Le Wang
- 通讯作者:S. Xie;M. Nazari;Le Wang
Leveraging Deep Learning to Improve Performance of Distributed Optimal Frequency Control Under Communication Failures
- DOI:10.1109/tsg.2022.3194131
- 发表时间:2023-01
- 期刊:
- 影响因子:9.6
- 作者:S. Xie;M. Nazari;Farinaz Nezampasandarbabi;L. Wang
- 通讯作者:S. Xie;M. Nazari;Farinaz Nezampasandarbabi;L. Wang
Distributed Optimal Frequency Control under communication packet loss in multi-agent electric energy systems
- DOI:10.1016/j.automatica.2023.111088
- 发表时间:2023-08
- 期刊:
- 影响因子:0
- 作者:S. Xie;M. Nazari;L. Wang;G. Yin;Xinyu Zhang
- 通讯作者:S. Xie;M. Nazari;L. Wang;G. Yin;Xinyu Zhang
Numerical Solutions for Detecting Contingency in Modern Power Systems
- DOI:10.1109/ictc57116.2023.10154790
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Xiaohang Ma;Hongjiang Qian;L. Wang;M. Nazari;G. Yin
- 通讯作者:Xiaohang Ma;Hongjiang Qian;L. Wang;M. Nazari;G. Yin
Supervisory control to maximize mean time to failure in discrete event systems
监督控制可最大限度地提高离散事件系统的平均无故障时间
- DOI:10.1007/s10626-023-00374-y
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Lin, Feng;Wang, Caisheng;Nazari, Masoud H.;Li, Wenyuan
- 通讯作者:Li, Wenyuan
共 6 条
- 1
- 2
Masoud Nazari其他文献
A low-voltage gain boosting-based current mirror with high input/output dynamic range
具有高输入/输出动态范围的基于低电压增益提升的电流镜
- DOI:10.1016/j.mejo.2019.05.02210.1016/j.mejo.2019.05.022
- 发表时间:20192019
- 期刊:
- 影响因子:0
- 作者:Mohamadsaeed Doreyatim;M. Akbari;Masoud Nazari;S. MahaniMohamadsaeed Doreyatim;M. Akbari;Masoud Nazari;S. Mahani
- 通讯作者:S. MahaniS. Mahani
Protective Effect of Aloe Vera Gel in Ulcerative Colitis: The Role of Inflammatory and Anti-Inflammatory Factors
芦荟凝胶对溃疡性结肠炎的保护作用:炎症和抗炎因子的作用
- DOI:
- 发表时间:20212021
- 期刊:
- 影响因子:0
- 作者:Z. Keshavarzi;M. Hadjzadeh;Masoud Nazari;R. ArezumandZ. Keshavarzi;M. Hadjzadeh;Masoud Nazari;R. Arezumand
- 通讯作者:R. ArezumandR. Arezumand
共 2 条
- 1
相似国自然基金
基于太赫兹行波管放大器的高效率多路功率合成技术的研究
- 批准号:62371102
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向超精密电机系统的双降压对称半桥功率放大器噪声机理及抑制策略研究
- 批准号:52307042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微波敏感型铁死亡纳米放大器的构建及其增敏肝癌消融-免疫联合治疗的应用与机制研究
- 批准号:82302368
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
紧凑型大功率微波速调管放大器研究
- 批准号:62371108
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于SISL的三维集成封装宽带高效率功率放大器研究
- 批准号:62301387
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: AMPS: Rare Events in Power Systems: Novel Mathematics, Statistics and Algorithms.
合作研究:AMPS:电力系统中的罕见事件:新颖的数学、统计和算法。
- 批准号:22290112229011
- 财政年份:2023
- 资助金额:$ 20万$ 20万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
- 批准号:22293452229345
- 财政年份:2023
- 资助金额:$ 20万$ 20万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: AMPS: Rare Events in Power Systems: Novel Mathematics, Statistics and Algorithms.
合作研究:AMPS:电力系统中的罕见事件:新颖的数学、统计和算法。
- 批准号:22290122229012
- 财政年份:2023
- 资助金额:$ 20万$ 20万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: AMPS: Rethinking State Estimation for Power Distribution Systems in the Quantum Era
合作研究:AMPS:重新思考量子时代配电系统的状态估计
- 批准号:22290742229074
- 财政年份:2023
- 资助金额:$ 20万$ 20万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: AMPS: Rethinking State Estimation for Power Distribution Systems in the Quantum Era
合作研究:AMPS:重新思考量子时代配电系统的状态估计
- 批准号:22290732229073
- 财政年份:2023
- 资助金额:$ 20万$ 20万
- 项目类别:Standard GrantStandard Grant