SWIFT: Advancing Coexistence through a Cross-Layer Design Platform with an Adaptive Frequency-Selective Radio Front-End and Digital Algorithms

SWIFT:通过具有自适应选频无线电前端和数字算法的跨层设计平台促进共存

基本信息

  • 批准号:
    2229021
  • 负责人:
  • 金额:
    $ 75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

As the crowding of the frequency spectrum continues, it becomes increasingly important to create new devices, circuits and computational algorithms with the ability to adaptively suppress unwanted electromagnetic interference during the reception and processing of wireless signals. This project is centered around the realization of a development platform that can enable transceivers for wireless communication to be designed across different disciplinary boundaries. The design platform will allow the prototyping of new devices and circuits, together with new reconfigurable computing and wireless communication algorithms. The research aims to lay the groundwork for enhanced radio frequency (RF) communication systems that make use of real-time tuning to adapt to different spectrum environments for higher interference tolerance, as well as to provide design techniques and tools that improve the coexistence of wireless devices in a broad range of scenarios. By enabling more compact devices with higher performance, interference robustness and digitally-controlled tuning for reliability, this research will help improve the well-being of our society that increasingly relies on wireless devices and systems for a plethora of needs. The project will also establish a foundation for the training of graduate and undergraduate students who can apply and develop cross-layer design techniques involving devices, circuits and computational algorithms. This research will provide a platform and first hardware prototypes for the co-design of next-generation RF receivers with the ability to suppress both in-channel and adjacent channel interferers without compromising the reception of desired signals that may have much lower power than the interferers. Recent progress in the design of time-modulated devices has led to the possibility to form frequency selective limiters (FSLs), which can intrinsically distinguish and attenuate interference characterized by power levels higher than a certain threshold. However, to realize FSLs that can protect receiver modules of various existing radios, these components require new monolithically integrated resonators with high quality factors (Q 2,000) and with varactors having low loss-tangents, wide tuning ranges and low capacitance values. By taking advantage of the acoustic properties of Aluminum Scandium Nitride (AlScN) thin-films and of the ferroelectric properties of Hafnium Zirconium Oxide (HZO) atomic layers, the research addresses this fundamental challenge through the development of fully integrated microelectromechanical system (MEMS) FSLs that can be manufactured with complementary metal-oxide-semiconductor (CMOS) process compatibility, and that can be deliberately tuned by analog CMOS circuits towards accomplishing the best possible digital signal processing results when operating in crowded spectral environments. The AlScN/HZO components will be co-developed with custom-designed analog circuits to achieve adaptive characteristics based on detected power levels, allowing to continuously optimize the signal processing quality at both device and system levels. To broaden the benefits across wireless system layers, digital coexistence algorithms and adaptive analog front-end circuits will be conceived to strategically tune the operating points of the FSLs and of the receiver circuits towards the highest communication quality. A prototyping platform with a reconfigurable field-programmable gate array (FPGA) will be constructed to develop the digital coexistence algorithms and apply them to Bluetooth Low Energy, Zigbee and Wi-Fi signals.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着频谱的拥挤,创建新的设备,电路和计算算法越来越重要,具有在接收和处理无线信号期间适应不需要抑制不需要的电磁干扰的能力。该项目围绕着开发平台的实现,该平台可以使收发器能够在不同的学科边界上设计无线通信。该设计平台将允许新设备和电路的原型制作,以及新的可重新配置计算和无线通信算法。该研究旨在为增强射频(RF)通信系统奠定基础,以利用实时调整以适应不同的光谱环境,以提高干扰公差,并提供设计技术和工具,以改善无线共存在各种场景中的设备。通过启用更紧凑的设备,具有更高的性能,干扰鲁棒性和数字控制调整以达到可靠性,这项研究将有助于改善我们社会的福祉,越来越多地依靠无线设备和系统来满足需求。该项目还将为培训研究生和本科生培训的基础,这些学生可以应用和开发涉及设备,电路和计算算法的跨层设计技术。 这项研究将为下一代RF接收器的共同设计提供平台和第一个硬件原型,并能够抑制渠道内和相邻的频道干扰器,而不会损害所需信号的接收,而所需信号的功率可能比干涉器低得多。时间调制设备设计的最新进展导致形成频率选择性限制器(FSL)的可能性,这些限制器可以内在区分和减轻干扰的功率水平高于一定阈值。但是,要实现可以保护各种现有无线电的接收器模块的FSL,这些组件需要具有高质量因素(Q 2,000)的单层整合的谐振器,并且变体具有低损失距离,较大的调谐范围和低电容值。通过利用氧化铝(ALSCN)薄膜的声学特性以及氧化锆二锆(HZO)原子层的铁电特性,这项研究通过填充整合的微电机电系统(MEMS)FSLS(MEMS)FSLS的发展来解决这一基本挑战可以通过互补的金属氧化物 - 氧化流极导器(CMOS)过程兼容性制造,并且可以通过模拟CMOS电路故意调整该过程,以实现在拥挤的光谱环境中运行时完成最佳的数字信号处理结果。 ALSCN/HZO组件将与自定义设计的模拟电路共同开发,以基于检测到的功率水平实现自适应特性,从而可以在设备和系统水平上连续优化信号处理质量。为了扩大无线系统层的好处,将构想数字共存算法和自适应模拟前端电路,以战略性地调整FSL和接收器电路的操作点,以朝着最高的沟通质量调整。将构建具有可重新配置的现场可编程门阵列(FPGA)的原型平台,以开发数字共存算法并将其应用于蓝牙低能,Zigbee和Wi-Fi信号。这一奖项反映了NSF的法定任务,并已被视为值得的。通过基金会的智力优点和更广泛的影响评估标准通过评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marvin Onabajo其他文献

Toward Wireless System and Circuit Co-Design for the Internet of Self-Adaptive Things
面向自适应物联网的无线系统和电路协同设计
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Diptashree Das;Mohammad Abdi;Minghan Liu;Marvin Onabajo;Francesco Restuccia
  • 通讯作者:
    Francesco Restuccia

Marvin Onabajo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marvin Onabajo', 18)}}的其他基金

RINGS: Internet of Things Resilience through Spectrum-Agile Circuits, Learning-Based Communications and Thermal Hardware Security
RINGS:通过频谱敏捷电路、基于学习的通信和热硬件安全实现物联网弹性
  • 批准号:
    2146754
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
CAREER: Low-Power Transceiver Design Methods for Wireless Medical Monitoring
职业:无线医疗监测的低功耗收发器设计方法
  • 批准号:
    1451213
  • 财政年份:
    2015
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
EAGER: Integrated Self-Calibrated Analog Front-End for Biopotential and Bioimpedance Measurements
EAGER:用于生物电势和生物阻抗测量的集成自校准模拟前端
  • 批准号:
    1349692
  • 财政年份:
    2013
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant

相似国自然基金

果蝇幼虫前进运动发起的神经机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
机器人鸟“前进”运动控制神经信息传导通路及反馈研究
  • 批准号:
    61903230
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
内蒙古中东部毛登-前进场早石炭世强过铝花岗岩带地球化学成因及其构造意义
  • 批准号:
    41702054
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
搅拌摩擦焊接过程前进阻力周期脉动振荡行为及调控研究
  • 批准号:
    51675248
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
高前进比大反流区对旋翼操纵响应的作用机理及影响规律研究
  • 批准号:
    51505216
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

ALPACA - Advancing the Long-range Prediction, Attribution, and forecast Calibration of AMOC and its climate impacts
APACA - 推进 AMOC 及其气候影响的长期预测、归因和预报校准
  • 批准号:
    2406511
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Planning: Advancing Discovery on a Sustainable National Research Enterprise
规划:推进可持续国家研究企业的发现
  • 批准号:
    2412406
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414607
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
HSI Implementation and Evaluation Project: Green Chemistry: Advancing Equity, Relevance, and Environmental Justice
HSI 实施和评估项目:绿色化学:促进公平、相关性和环境正义
  • 批准号:
    2345355
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了