Geometric Insights in Noncommutative Algebra

非交换代数中的几何见解

基本信息

  • 批准号:
    2201273
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Commutative algebra studies algebraic systems for which the order of multiplication is irrelevant, while noncommutative algebra allows for the possibility that the two products XY and YX may not be the same. Noncommutative algebra historically arose in the algebraic study of symmetry, in linear algebra, and perhaps most profoundly in quantum mechanics. Since the advent of algebraic geometry, commutative algebra has been revolutionized by geometric ideas. In a similar way, the development of noncommutative geometry over the past several decades has stimulated many new ideas and perspectives in noncommutative algebra, but to date it has posed more challenges than it has solved. For instance, many noncommutative algebras are expected to be well-behaved due to the geometric nature of their construction, but we lack the algebraic tools to prove that this is the case. Furthermore, noncommutative geometry largely remains a collection of loosely related frameworks that are not directly compatible with one another, which can make the field especially difficult for newcomers. This project will directly address these fundamental problems by creating new techniques to deduce good algebraic properties for geometrically constructed noncommutative algebras and providing new tools to represent geometric structures corresponding to noncommutative algebras. The project will involve research and training opportunities for graduate students.The first part of this project focuses on homological problems in noncommutative algebraic geometry. The PI and collaborators will use methods of Koszul duality and the representations of finite-dimensional algebras to attack a longstanding conjecture that Artin-Schelter (AS) regular algebras are domains. Related techniques will be used to understand when generalized AS regular algebras that are not necessarily connected, such as graded Calabi-Yau algebras, are prime rings. The second part of this project is focused on spectral problems in noncommutative geometry. The PI will use a variety of approaches to understand noncommutative discrete spaces and utilize them to construct noncommutative spectrum functors for both rings and C*-algebras. Topics to be investigated include structure sheaves for noncommutative spaces, methods to characterize dual coalgebras, discretization of C*-algebras, and a projective representation theory for rings.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
交换代数研究与乘法顺序无关的代数系统,而非交换代数允许两个乘积 XY 和 YX 可能不相同的可能性。非交换代数历史上出现在对称性代数研究、线性代数中,也许最深刻的是量子力学中。自从代数几何出现以来,几何思想彻底改变了交换代数。同样,非交换几何在过去几十年的发展激发了非交换代数中的许多新思想和观点,但迄今为止,它带来的挑战比它解决的挑战还要多。例如,许多非交换代数由于其构造的几何性质而被期望表现良好,但我们缺乏代数工具来证明情况确实如此。此外,非交换几何在很大程度上仍然是松散相关框架的集合,这些框架彼此不直接兼容,这使得该领域对于新手来说特别困难。该项目将通过创建新技术来推导几何构造的非交换代数的良好代数性质并提供新工具来表示与非交换代数相对应的几何结构,从而直接解决这些基本问题。该项目将为研究生提供研究和培训机会。该项目的第一部分重点关注非交换代数几何中的同调问题。 PI 和合作者将使用 Koszul 对偶性方法和有限维代数的表示来攻击长期存在的猜想,即 Artin-Schelter (AS) 正则代数是域。将使用相关技术来理解不一定连通的广义 AS 正则代数(例如分级 Calabi-Yau 代数)何时是素环。该项目的第二部分重点关注非交换几何中的谱问题。 PI 将使用各种方法来理解非交换离散空间,并利用它们为环和 C* 代数构造非交换谱函子。要研究的主题包括非交换空间的结构滑轮、对偶代数的表征方法、C* 代数的离散化以及环的射影表示理论。该奖项反映了 NSF 的法定使命,并通过使用基金会的评估进行评估,认为值得支持。智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Manuel Reyes其他文献

Transcatheter Valve Replacement: Risk Levels and Contemporary Outcomes.
经导管瓣膜置换术:风险水平和当代结果。
Accelerating Medicines Partnership® Schizophrenia (AMP® SCZ): Rationale and Study Design of the Largest Global Prospective Cohort Study of Clinical High Risk for Psychosis
Acceleating Medicines Partnership® 精神分裂症 (AMP® SCZ):全球最大的精神病临床高风险前瞻性队列研究的基本原理和研究设计
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Cassandra M J Wannan;Barnaby Nelson;Jean Addington;K. Allott;A. Anticevic;Celso Arango;Justin T Baker;C. Bearden;Tashrif Billah;Sylvain Bouix;Matthew R Broome;Kate Buccilli;K. Cadenhead;Monica E. Calkins;T. Cannon;Guillermo Cecci;E. Y. Chen;Kang Ik K Cho;Jimmy Choi;Scott R. Clark;Michael J. Coleman;Philippe Conus;Cheryl M. Corcoran;B. Cornblatt;C. Díaz;Dominic Dwyer;B. Ebdrup;L. Ellman;Paolo Fusar‐Poli;Liliana Galindo;Pablo A. Gaspar;Carla Gerber;L. Glenthøj;Robert J Glynn;Michael P Harms;Leslie E Horton;René S. Kahn;J. Kambeitz;L. Kambeitz;John M Kane;Tina Kapur;M. Keshavan;Sung;N. Koutsouleris;M. Kubicki;J. Kwon;K. Langbein;K. Lewandowski;Gregory A. Light;D. Mamah;Patricia Marcy;D. Mathalon;Patrick D McGorry;V. A. Mittal;M. Nordentoft;Angela R. Nunez;O. Pasternak;Godfrey D Pearlson;Jesus Perez;D. Perkins;Albert R. Powers;D. Roalf;F. Sabb;Jason Schiffman;Jai L. Shah;S. Smesny;J. Spark;Wiliam S Stone;G. Strauss;Zailyn Tamayo;John Torous;R. Upthegrove;M. Vangel;Swapna Verma;Jijun Wang;I. Rossum;D. Wolf;Phillip Wolff;Stephen J. Wood;Alison R. Yung;Carla Agurto;M. Alvarez;P. Amminger;Marco Armando;Ameneh Asgari;John D Cahill;R. Carrión;Eduardo Castro;S. Cetin;M. Mallar Chakravarty;Youngsun T. Cho;David R Cotter;Simon D’Alfonso;M. Ennis;S. Fadnavis;C. Fonteneau;C. Gao;T. Gupta;Raquel E. Gur;Ruben C Gur;Holly K Hamilton;Gil D. Hoftman;Grace R Jacobs;Johanna M. Jarcho;J. L. Ji;Christian G. Kohler;P. Lalousis;S. Lavoie;Martin Lepage;Einat Liebenthal;Josh Mervis;Vishnu P. Murty;Spero C. Nicholas;Lipeng Ning;Nora Penzel;Russel Poldrack;Pablo Polosecki;Danielle N Pratt;Rachel Rabin;Habiballah Rahimi Eichi;Y. Rathi;Abraham Reichenberg;Jenna M. Reinen;Jack Rogers;Bernalyn Ruiz;Isabelle Scott;J. Seitz;Vinod H Srihari;Agrima Srivastava;Andrew Thompson;B. Turetsky;B. Walsh;T. Whitford;J. Wigman;Beier Yao;H. Yuen;Uzair Ahmed;A. Byun;Yoonho Chung;Kim Do;Larry Hendricks;Kevin Huynh;C. Jeffries;Erlend Lane;Carsten Langholm;Eric Lin;V. Mantua;Gennarina D Santorelli;K. Ruparel;Eirini Zoupou;Tatiana Adasme;Lauren Addamo;Laura L. Adery;Munaza Ali;A. Auther;Samantha Aversa;Seon;Kelly Bates;Alyssa Bathery;J. Bayer;Rebecca Beedham;Z. Bilgrami;Sonia Birch;I. Bonoldi;Owen Borders;Renato Borgatti;Lisa Brown;Alejandro Bruna;Holly Carrington;Rolando I Castillo;Justine Chen;Nicholas Cheng;Ann Ee Ching;Chloe Clifford;Beau;Pamela Contreras;Sebastián Corral;S. Damiani;Monica Done;A. Estradé;Brandon Asika Etuka;M. Formica;Rachel Furlan;Mia Geljic;Carmela Germano;Ruth Getachew;Mathias Goncalves;Anastasia Haidar;J. Hartmann;Anna Jo;Omar John;Sarah Kerins;M. Kerr;Irena Kesselring;Honey Kim;Nicholas Kim;Kyle S. Kinney;Marija Krcmar;Elana Kotler;Melanie Lafanechere;Clarice Lee;Joshua Llerena;C. Markiewicz;Priya Matnejl;Alejandro Maturana;Aissata Mavambu;Rocío Mayol;Amelia McDonnell;A. McGowan;Danielle McLaughlin;Rebecca McIlhenny;Brittany McQueen;Yohannes Mebrahtu;M. Mensi;C. Hui;Y. Suen;S. M. Wong;Neal Morrell;Mariam Omar;Alice Partridge;Christina Phassouliotis;A. Pichiecchio;P. Politi;Christian Porter;U. Provenzani;N. Prunier;Jasmine Raj;Susan Ray;Victoria Rayner;Manuel Reyes;Kate Reynolds;Sage Rush;César Salinas;J. Shetty;Callum Snowball;Sophie Tod;Gabriel Turra;Daniela Valle;Simone Veale;S. Whitson;Alana Wickham;Sarah Youn;Francisco Zamorano;Elissa Zavaglia;J. Zinberg;Scott W Woods;M. Shenton
  • 通讯作者:
    M. Shenton
Modulation of neuronal dynamics by sustained and activity-dependent continuous-wave near-infrared laser stimulation
通过持续且活动依赖性的连续波近红外激光刺激调节神经元动力学
  • DOI:
    10.1117/1.nph.11.2.024308
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Alicia Garrido;Pablo Sanchez;Manuel Reyes;Rafael Levi;Francisco B Rodriguez;Javier Castilla;Jesús Tornero;P. Varona
  • 通讯作者:
    P. Varona
A dataset for soil organic carbon in agricultural systems for the Southeast Asia region
东南亚地区农业系统土壤有机碳数据集
  • DOI:
    10.1038/s41597-024-03213-3
  • 发表时间:
    2024-04-12
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Federico Gomez;Ana J. P. Carcedo;Chan Makara Mean;Manuel Reyes;L. Hok;Florent Tivet;Vang Seng;P. V. Vara Prasad;Ignacio Ciampitti
  • 通讯作者:
    Ignacio Ciampitti
Hybrid method for selection of the optimal process of leachate treatment in waste treatment and valorization plants or landfills
用于选择废物处理和增值工厂或垃圾填埋场渗滤液处理最佳工艺的混合方法

Manuel Reyes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Manuel Reyes', 18)}}的其他基金

SBIR Phase I: A Personalized Search Engine for Educational Resources
SBIR 第一阶段:个性化教育资源搜索引擎
  • 批准号:
    1345533
  • 财政年份:
    2014
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RUI: Noncommutative polynomial algebras and the foundations of noncommutative geometry
RUI:非交换多项式代数和非交换几何基础
  • 批准号:
    1407152
  • 财政年份:
    2014
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

当前对星团性质的新见解及其它们深远的影响- - 我们通常认为的单族恒星观念被终结了吗?
  • 批准号:
    11373010
  • 批准年份:
    2013
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目

相似海外基金

RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
  • 批准号:
    2327267
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
An innovative platform using ML/AI to analyse farm data and deliver insights to improve farm performance, increasing farm profitability by 5-10%
An%20innovative%20platform%20using%20ML/AI%20to%20analysis%20farm%20data%20and%20deliver%20insights%20to%20improv%20farm%20performance,%20increasing%20farm%20profitability%20by%205-10%
  • 批准号:
    10093235
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Collaborative R&D
Evaluation of Articulatory Coordination and Oropharyngeal Displacement in Subjects with Cleft Lip and Palate: A Real-Time 3D MRI Study for Advancing Clinical Insights
唇腭裂患者的关节协调性和口咽位移评估:实时 3D MRI 研究,促进临床洞察
  • 批准号:
    24K13191
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Revealing complexity of hyaluronan-protein interactions: novel tools and insights
揭示透明质酸-蛋白质相互作用的复杂性:新颖的工具和见解
  • 批准号:
    BB/X007278/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
Uncovering Sex-Specific Biological Mechanisms of Depression: Insights from Large-Scale Data Analysis
揭示抑郁症的性别特异性生物学机制:大规模数据分析的见解
  • 批准号:
    MR/Y011112/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了