Colloid dynamics in porous media induced by fluid flow and solute transport

流体流动和溶质传输引起的多孔介质中的胶体动力学

基本信息

  • 批准号:
    2200882
  • 负责人:
  • 金额:
    $ 32.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2023-10-31
  • 项目状态:
    已结题

项目摘要

The goal of this proposal is to identify how the motion of colloidal particles in a porous medium is affected by fluid flow and the presence of dissolved solutes in the fluid. Variations in solute concentrations can influence the motion of the colloidal particles through a random network of pores or channels. This project will use microfluidic experiments to explore the mechanisms by which solute concentration gradients affect the motion of colloidal particles, which can lead to accumulation of the particles and blockage of certain channels within the porous matrix. The results of this research will be directly relevant to important industrial and naturally-occurring processes such as chemical enhanced oil recovery (EOR). Chemical EOR processes, including surfactant flooding, polymer flooding, and low-salinity water flooding, have significantly enhanced production from oil reservoirs in the US. EOR often involves flow of colloidal suspensions through a porous subsurface containing variations in chemical concentrations of various solutes. The non-uniform chemical environment in the porous medium may cause the colloidal particles to undergo a strong directed motion, which may lead to unexpected colloid dynamics and may influence EOR performance and efficiency.The two aims of the project are to characterize quantitatively colloid diffusiophoresis in flow junctions and to investigate diffusiophoresis and Marangoni propulsion of oil drops in porous media for chemical EOR processes. The project will include experimental studies of the solute-gradient-induced colloid motion for various parameters. Microfluidic tools will be used to precisely control experimental conditions, and fluorescence microscopy combined with 3D high-speed imaging will be used to measure colloid motion. The experiments will mimic realistic conditions for chemical EOR processes so that results elucidate effects of solute transport on the motion of hard and soft colloids in random porous media. Numerical simulations and reduced-order analytical models will complement the experimental observations and provide further insights into the solute-gradient-induced colloid dynamics. The combination of microfluidics experiments and numerical modeling provides a compelling opportunity for interdisciplinary research and education in transport phenomena. The research activities will be integrated into an educational effort directed toward engineering students as well as an outreach effort aimed at encouraging under-represented minority students, especially native Hawaiians and Pacific Islanders, to study microfluidics and transport phenomena.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该提案的目标是确定多孔介质中胶体颗粒的运动如何受到流体流动和流体中溶解溶质的影响。 溶质浓度的变化会影响胶体颗粒通过随机的孔或通道网络的运动。 该项目将利用微流体实验来探索溶质浓度梯度影响胶体颗粒运动的机制,这可能导致颗粒堆积并堵塞多孔基质内的某些通道。这项研究的结果将与重要的工业和自然发生的过程直接相关,例如化学提高石油采收率(EOR)。 化学 EOR 工艺,包括表面活性剂驱、聚合物驱和低矿化度水驱,显着提高了美国油藏的产量。 EOR 通常涉及胶体悬浮液流过多孔地下,其中各种溶质的化学浓度存在变化。多孔介质中的不均匀化学环境可能会导致胶体颗粒发生强烈的定向运动,这可能会导致意想不到的胶体动力学,并可能影响 EOR 性能和效率。该项目的两个目标是定量表征胶体扩散电泳流连接处并研究化学 EOR 过程中多孔介质中油滴的扩散电泳和 Marangoni 推进。该项目将包括对各种参数下溶质梯度引起的胶体运动的实验研究。微流控工具将用于精确控制实验条件,荧光显微镜与3D高速成像相结合将用于测量胶体运动。这些实验将模拟化学 EOR 过程的实际条件,以便结果阐明溶质输运对随机多孔介质中硬胶体和软胶体运动的影响。数值模拟和降阶分析模型将补充实验观察,并提供对溶质梯度诱导的胶体动力学的进一步见解。微流体实验和数值建模的结合为运输现象的跨学科研究和教育提供了令人信服的机会。这些研究活动将纳入针对工程专业学生的教育工作以及旨在鼓励代表性不足的少数族裔学生,特别是夏威夷土著和太平洋岛民研究微流体和运输现象的外展工作。该奖项反映了 NSF 的法定使命和通过使用基金会的智力价值和更广泛的影响审查标准进行评估,该项目被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shape- and orientation-dependent diffusiophoresis of colloidal ellipsoids
胶体椭球的形状和方向依赖性扩散电泳
  • DOI:
    10.1103/physreve.107.l052602
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Doan, Viet Sang;Kim, Dong;Snoeyink, Craig;Sun, Ying;Shin, Sangwoo
  • 通讯作者:
    Shin, Sangwoo
Directed colloidal assembly and banding via DC electrokinetics
通过直流电动学进行定向胶体组装和成带
  • DOI:
    10.1063/5.0133871
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Shin; Sangwoo
  • 通讯作者:
    Sangwoo
Formation of a colloidal band via pH‐dependent electrokinetics
通过 pH 依赖性电动势形成胶体带
  • DOI:
    10.1002/elps.202100125
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Doan, Viet Sang;Shin, Sangwoo
  • 通讯作者:
    Shin, Sangwoo
Confinement-Dependent Diffusiophoretic Transport of Nanoparticles in Collagen Hydrogels
胶原水凝胶中纳米粒子的约束依赖性扩散电泳传输
  • DOI:
    10.1021/acs.nanolett.1c02251
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Doan, Viet Sang;Chun, SungGyu;Feng, Jie;Shin, Sangwoo
  • 通讯作者:
    Shin, Sangwoo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sangwoo Shin其他文献

Directed colloidal assembly and banding via DC electrokinetics.
通过直流电动学定向胶体组装和成带。
  • DOI:
    10.1063/5.0133871
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Sangwoo Shin
  • 通讯作者:
    Sangwoo Shin
MMOG User Participation Based Decentralized Consensus Scheme and Proof of Participation Analysis on the Bryllite Blockchain System
Bryllite区块链系统上基于MMOG用户参与的去中心化共识方案及参与分析证明
  • DOI:
    10.3837/tiis.2019.08.015
  • 发表时间:
    2019-08-30
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jusik Yun;Yunyeong Goh;Jong‐Moon Chung;Ok;Sangwoo Shin;Jin Choi;Yoora Kim
  • 通讯作者:
    Yoora Kim
Flow Driven Oil Recovery Enhanced with Structural Disjoining Pressure
通过结构分离压力增强流动驱动石油采收率
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shane Laibach;Egor Vinogradov;Jasper Stedman;M. G. G. Aravindan;Myles Geise;Viet Sang Doan;Sangwoo Shin;Craig Snoeyink
  • 通讯作者:
    Craig Snoeyink
Healing capillary films
愈合毛细血管膜
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Z. Zheng;M. Fontelos;Sangwoo Shin;M. Dallaston;D. Tseluiko;S. Kalliadasis;H. Stone
  • 通讯作者:
    H. Stone
Diffusiophoresis promotes phase separation and transport of biomolecular condensates
扩散电泳促进生物分子凝聚物的相分离和传输
  • DOI:
    10.21203/rs.3.rs-3171749/v1
  • 发表时间:
    2023-07-27
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Viet Sang Doan;Ibraheem Alshareedah;Anurag Singh;Priya R Banerjee;Sangwoo Shin
  • 通讯作者:
    Sangwoo Shin

Sangwoo Shin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sangwoo Shin', 18)}}的其他基金

CAREER: Phoretic Transport of Membrane-Bound Biological Colloids in Complex Environments
职业:复杂环境中膜结合生物胶体的电泳传输
  • 批准号:
    2237177
  • 财政年份:
    2023
  • 资助金额:
    $ 32.02万
  • 项目类别:
    Continuing Grant
Diffusiophoretic Bioaugmentation: Boosting the Bacterial Motility in Soil Matrix by Chemical Gradients for Enhanced Bioremediation
扩散电泳生物强化:通过化学梯度增强土壤基质中的细菌活力,以增强生物修复
  • 批准号:
    2223737
  • 财政年份:
    2022
  • 资助金额:
    $ 32.02万
  • 项目类别:
    Standard Grant
Colloid dynamics in porous media induced by fluid flow and solute transport
流体流动和溶质传输引起的多孔介质中的胶体动力学
  • 批准号:
    1930691
  • 财政年份:
    2019
  • 资助金额:
    $ 32.02万
  • 项目类别:
    Standard Grant

相似国自然基金

基于物理信息DeepONet神经网络及多孔介质孔隙尺度建模的多相流动力学研究
  • 批准号:
    12372246
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
多孔氧化铝陶瓷的动力学特性和本构关系研究
  • 批准号:
    12372352
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
纳米多孔金壳的传质动力学与二氧化碳电还原选择性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多孔类石墨碳基掺杂TiO2声敏剂的制备及声动力学治疗性能研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
合金化提升纳米多孔镍基催化剂Li–CO2电池反应动力学性能的机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Quantification of the Impact of Hydrologic Controls on Anomalous Solute Transport and Mixing Dynamics in Partially Saturated Porous Media
水文控制对部分饱和多孔介质中异常溶质输运和混合动力学影响的量化
  • 批准号:
    2329250
  • 财政年份:
    2024
  • 资助金额:
    $ 32.02万
  • 项目类别:
    Standard Grant
Quantification of the Impact of Hydrologic Controls on Anomalous Solute Transport and Mixing Dynamics in Partially Saturated Porous Media
水文控制对部分饱和多孔介质中异常溶质输运和混合动力学影响的量化
  • 批准号:
    2329250
  • 财政年份:
    2024
  • 资助金额:
    $ 32.02万
  • 项目类别:
    Standard Grant
Porous Bodies: Ecology and the Dynamics of Mattering in Contemporary Art.
多孔体:当代艺术中的生态学和物质动力学。
  • 批准号:
    2712595
  • 财政年份:
    2022
  • 资助金额:
    $ 32.02万
  • 项目类别:
    Studentship
Computational Fluid Dynamics simulation of rain water runoff on rough and porous building facades
粗糙多孔建筑立面雨水径流的计算流体动力学模拟
  • 批准号:
    2579176
  • 财政年份:
    2021
  • 资助金额:
    $ 32.02万
  • 项目类别:
    Studentship
Kinetic interface sensitive tracers – Emerging smart tracer techniques for investigating the dynamics of fluid-fluid interfacial area in multiphase porous media systems
动力学界面敏感示踪剂 â 新兴智能示踪剂技术,用于研究多相多孔介质系统中流体-流体界面区域的动力学
  • 批准号:
    428614366
  • 财政年份:
    2019
  • 资助金额:
    $ 32.02万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了