BRITE Fellow: Semiconductor Evolution via Manufacturing Innovation (SEMI)

BRITE 院士:通过制造创新实现半导体演进 (SEMI)

基本信息

  • 批准号:
    2227551
  • 负责人:
  • 金额:
    $ 99.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2027-12-31
  • 项目状态:
    未结题

项目摘要

This Boosting Research Ideas for Transformative and Equitable Advances in Engineering (BRITE) Fellow grant supports research that contributes new knowledge related to a semiconductor manufacturing process, promoting both the progress of science and advancing national prosperity. While the total global semiconductor market is strong and semiconductors represent an important US export, the US share of global semiconductor manufacturing is predicted to continually decline. As an approach to rebuild domestic semiconductor manufacturing, the vision of this research work is to transcend the existing paradigm of manufactured electronic materials being either organic or inorganic and to embrace the versatility and functionality of hybrid semiconductors (comprising both inorganic and organic materials). The evolution to hybrid semiconductors could mitigate disadvantages that exist for any single material type by combining the disparate characteristics of both constituents, and in so doing, reinvent US semiconductor manufacturing. The potential for hybrid semiconductors to incorporate multi-functionality, flexibility, transparency, and sustainability in devices in new ways can enable next generation electronics. Anticipated rewards of the manufacturing innovation required for this endeavor align with national needs of enabling new domestic semiconductor capabilities and developing a highly skilled and educated workforce. Guiding principles to implement this vision include sustainability; diversity, equity, and inclusion; and support of K-12 education to develop the human resources needed in the future. Thin-film deposition of heterogeneous systems comprising two or more materials with fundamentally different properties is a critical challenge, yet this capability could enable new hybrid semiconductor technologies. Existing state-of-the-art approaches to film deposition of hybrid semiconductors primarily use solution-based processing, such as inkjet printing. These approaches are subject to challenges of composition control, achieving monolithic heterostructures, and compatibility with a wide range of materials and substrates. This research is to translate lab-based discoveries of a film deposition technique, resonant infrared matrix-assisted pulsed laser evaporation or RIR-MAPLE, into a scalable manufacturing technology. In the RIR-MAPLE process, target solutions or emulsions are frozen such that sublimation of a matrix solvent (involving vapor-phase) releases a plume of target droplets onto a substrate. To achieve an industrial-scale RIR-MAPLE process that is controllable, reproducible, and high-throughput, this work investigates the basic science necessary to transition RIR-MAPLE into a precise, scalable method. This work explores monitoring and feedback via spectroscopic ellipsometry; extends film thickness uniformity to larger area for higher throughput; and determines maximum background pressure for controlled film deposition. This research involves the study of complex materials, including hybrid organic-inorganic perovskites, hybrid organic nanocomposites, and metal-organic frameworks (MOFs).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项促进工程变革和公平进步的研究理念 (BRITE) 研究员资助支持贡献与半导体制造工艺相关的新知识的研究,促进科学进步和促进国家繁荣。尽管全球半导体市场总体强劲,并且半导体是美国的重要出口产品,但美国在全球半导体制造业中的份额预计将持续下降。作为重建国内半导体制造的一种方法,这项研究工作的愿景是超越现有的有机或无机电子材料制造范式,并拥抱混合半导体(包括无机和有机材料)的多功能性和功能性。混合半导体的发展可以通过结合两种成分的不同特性来减轻任何单一材料类型存在的缺点,从而重塑美国半导体制造业。混合半导体以新的方式将多功能性、灵活性、透明度和可持续性融入设备中的潜力可以使下一代电子产品成为可能。这项努力所需的制造创新的预期回报符合国家对实现新的国内半导体能力和培养高技能和受过教育的劳动力的需求。实现这一愿景的指导原则包括可持续性;多样性、公平性和包容性;支持K-12教育以培养未来所需的人力资源。由两种或多种具有根本不同特性的材料组成的异质系统的薄膜沉积是一个严峻的挑战,但这种能力可以实现新的混合半导体技术。现有最先进的混合半导体薄膜沉积方法主要使用基于溶液的处理,例如喷墨印刷。这些方法面临着成分控制、实现整体异质结构以及与各种材料和基材的兼容性方面的挑战。这项研究旨在将基于实验室的薄膜沉积技术、共振红外矩阵辅助脉冲激光蒸发或 RIR-MAPLE 的发现转化为可扩展的制造技术。在 RIR-MAPLE 工艺中,目标溶液或乳液被冷冻,使得基质溶剂(涉及气相)升华,将目标液滴羽流释放到基材上。为了实现可控、可重复和高通量的工业规模 RIR-MAPLE 工艺,这项工作研究了将 RIR-MAPLE 转变为精确、可扩展方法所需的基础科学。这项工作探讨了通过光谱椭圆光度术进行监测和反馈;将薄膜厚度均匀性扩展到更大的区域,以提高产量;并确定受控薄膜沉积的最大背景压力。这项研究涉及复杂材料的研究,包括杂化有机-无机钙钛矿、杂化有机纳米复合材料和金属-有机框架(MOF)。该奖项反映了 NSF 的法定使命,并通过利用基金会的智力优势和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adrienne Stiff-Roberts其他文献

Adrienne Stiff-Roberts的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adrienne Stiff-Roberts', 18)}}的其他基金

Collaborative Research: Processing Films from Multi-Functional Polymer Dispersion Blends
合作研究:用多功能聚合物分散体共混物加工薄膜
  • 批准号:
    1727572
  • 财政年份:
    2017
  • 资助金额:
    $ 99.93万
  • 项目类别:
    Standard Grant
I-Corps: Volatile Organic Compound Sensors using Conducting Polymer and Nanocomposite Blends deposited by Resonant Infrared, Matrix-Assisted Pulsed Laser Evaporation
I-Corps:使用通过共振红外、基质辅助脉冲激光蒸发沉积的导电聚合物和纳米复合材料混合物制成的挥发性有机化合物传感器
  • 批准号:
    1450511
  • 财政年份:
    2014
  • 资助金额:
    $ 99.93万
  • 项目类别:
    Standard Grant
NSF/Sandia: Collaborative Research: Hybrid Integration of Nano-Scale Quantum Dots with Micron-Scale Photonic Crystal Cavities for Infrared Sensors
NSF/桑迪亚:合作研究:用于红外传感器的纳米级量子点与微米级光子晶体腔的混合集成
  • 批准号:
    0625099
  • 财政年份:
    2006
  • 资助金额:
    $ 99.93万
  • 项目类别:
    Standard Grant
CAREER: Hybrid Nanomaterials for Multi-Functional Sensors - Synthesis and Characterization of Nanocomposite Thin-Films for Device Applications
职业:用于多功能传感器的混合纳米材料 - 用于设备应用的纳米复合薄膜的合成和表征
  • 批准号:
    0547273
  • 财政年份:
    2006
  • 资助金额:
    $ 99.93万
  • 项目类别:
    Standard Grant

相似国自然基金

中国数学会院士座谈会与科普活动
  • 批准号:
    12126511
  • 批准年份:
    2021
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
数学院士专家大学中学系列科普活动
  • 批准号:
    12026425
  • 批准年份:
    2020
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
院士专家系列数学科普讲座
  • 批准号:
    11926409
  • 批准年份:
    2019
  • 资助金额:
    18.0 万元
  • 项目类别:
    数学天元基金项目
共生视角下的院士科学合作网络结构与演化趋势研究:以中美两国科学院院士为例
  • 批准号:
    71603015
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
院士专家大学中学行系列数学科普活动
  • 批准号:
    11526003
  • 批准年份:
    2015
  • 资助金额:
    16.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Arlene George F32
阿琳·乔治 F32
  • 批准号:
    10722238
  • 财政年份:
    2024
  • 资助金额:
    $ 99.93万
  • 项目类别:
研究指導能力向上に向けた看護系大学院修士・博士課程教育連動型FDモデルの開発
开发与护理研究生院硕士和博士课程挂钩的FD模型,以提高研究指导能力
  • 批准号:
    23K24629
  • 财政年份:
    2024
  • 资助金额:
    $ 99.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
小児病院前救護におけるVR技術を用いた救命士教育プログラムの開発と教育効果の検証
利用VR技术开发儿科院前急救救生员教育方案并验证教育效果
  • 批准号:
    24K06335
  • 财政年份:
    2024
  • 资助金额:
    $ 99.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Professor Sally Theobald application for the Global Health Policy & Systems Senior Research Fellow
Sally Theobald 教授申请全球卫生政策
  • 批准号:
    EP/Y033051/1
  • 财政年份:
    2024
  • 资助金额:
    $ 99.93万
  • 项目类别:
    Research Grant
Infectious Diseases Training program in Bolivia: South-South Training with Peru
玻利维亚传染病培训项目:与秘鲁的南南培训
  • 批准号:
    10838920
  • 财政年份:
    2024
  • 资助金额:
    $ 99.93万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了