Collaborative Research: CPS: Small: An Integrated Reactive and Proactive Adversarial Learning for Cyber-Physical-Human Systems

协作研究:CPS:小型:网络-物理-人类系统的集成反应式和主动式对抗学习

基本信息

  • 批准号:
    2227185
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

The gradual deployment of self-driving cars will inevitably lead to the emergence of a new important class of cyber-physical-human systems where autonomous vehicles interact with human-driven vehicles via on-board sensors or vehicle-to-vehicle communications. Reinforcement learning along with control theory can help meet the safety requirements for real-time decision making and Level 5 autonomy in self-driving vehicles. However, it is widely known that conventional reinforcement learning policies are vulnerable to adversarial or non-adversarial perturbations to their observations, similar to adversarial examples for classifiers and/or reward (packet) drops of the learning. Such issues are exacerbated by concerns of addressing resiliency as the use of open communication and control platforms for autonomy becomes essential, and as the industry continues to invest in such systems. Decision making mechanisms, designed to incorporate agility with the help of reinforcement learning, allow self-adaptation, self-healing, and self-optimization. This research will contribute and unify the body of knowledge of several diverse fields including reinforcement learning, security, automatic control, and transportation for resilient autonomy with humans-in-the-loop.In this project, to counter action and observation manipulation as well as reward drops, the principal investigators will leverage proactive switching policies that aim (i) to provide robustness to adversarial inputs and reward drops in the closed-loop reinforcement learning mechanisms, (ii) to increase the cost of manipulation by deception, (iii) to limit the exposure of vulnerable actions and observations, and (iv) to provide stability, optimality, and robustness guarantees. Ultimately, the investigators will develop fundamental contributions to each of the above-mentioned fields and amalgamate these fields to provide a unique synthesis framework. The outcomes of this project will increase levels of confidence in autonomous technologies from ethical perspectives by providing an underpinning for curtailing accidents. The proposed framework can be extended to other key enablers of the global economy, including smart and connected cities, healthcare, and networked actions of smart systems while decreasing environmental pollution and minimizing the adverse environmental impacts on human health. The project will train the next generation of students from various levels, ages, and cultures through well-coordinated, level appropriate involvement in research and educational activities while providing a unique opportunity for the students to appreciate efficient, autonomous, and low-cost designs. This project will also contribute to future engineering curricula, pursue a substantial integration of research and education, and provide opportunities to engage students from the underrepresented group.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自动驾驶汽车的逐步部署将不可避免地导致一类新的重要的网络物理人类系统的出现,其中自动驾驶汽车通过车载传感器或车辆间通信与人类驾驶的车辆进行交互。强化学习与控制理论相结合,有助于满足自动驾驶车辆实时决策和 5 级自主性的安全要求。然而,众所周知,传统的强化学习策略很容易受到对其观察结果的对抗性或非对抗性扰动,类似于分类器和/或学习奖励(数据包)丢弃的对抗性示例。随着使用开放式通信和控制平台实现自主性变得至关重要,并且行业继续投资于此类系统,对解决弹性问题的担忧加剧了这些问题。决策机制旨在借助强化学习将敏捷性结合起来,实现自我适应、自我修复和自我优化。这项研究将贡献并统一多个不同领域的知识体系,包括强化学习、安全、自动控制和运输,以实现人在环中的弹性自主。在这个项目中,为了对抗行动和观察操纵以及奖励下降,主要研究人员将利用主动切换策略,旨在(i)为闭环强化学习机制中的对抗性输入和奖励下降提供鲁棒性,(ii)增加欺骗操纵的成本,(iii)限制脆弱行为和观察的曝光,以及(iv) 提供稳定性、最优性和稳健性保证。最终,研究人员将为上述每个领域做出基础贡献,并将这些领域合并以提供独特的综合框架。该项目的成果将为减少事故提供基础,从而从伦理角度提高人们对自主技术的信心。拟议的框架可以扩展到全球经济的其他关键推动因素,包括智能和互联城市、医疗保健和智能系统的网络化行动,同时减少环境污染并最大限度地减少对人类健康的不利环境影响。该项目将通过协调一致、适当参与研究和教育活动来培训来自不同层次、年龄和文化的下一代学生,同时为学生提供欣赏高效、自主和低成本设计的独特机会。该项目还将为未来的工程课程做出贡献,追求研究和教育的实质性整合,并提供吸引弱势群体学生参与的机会。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势进行评估,被认为值得支持以及更广泛的影响审查标准。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cooperative Finitely Excited Learning for Dynamical Games
  • DOI:
    10.1109/tcyb.2023.3274908
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    11.8
  • 作者:
    Yongliang Yang;H. Modares;K. Vamvoudakis;F. Lewis
  • 通讯作者:
    Yongliang Yang;H. Modares;K. Vamvoudakis;F. Lewis
Decentralized Multi-Agent Motion Planning in Dynamic Environments
动态环境中的分散式多智能体运动规划
  • DOI:
    10.23919/acc55779.2023.10156024
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Netter, Josh;Vamvoudakis, Kyriakos G.
  • 通讯作者:
    Vamvoudakis, Kyriakos G.
Game Theory for Autonomy: From Min-Max Optimization to Equilibrium and Bounded Rationality Learning
  • DOI:
    10.23919/acc55779.2023.10156432
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Vamvoudakis;Filippos Fotiadis;J. Hespanha;Raphael Chinchilla;Guosong Yang;Mushuang Liu;J. Shamma;Lacra Pavel
  • 通讯作者:
    K. Vamvoudakis;Filippos Fotiadis;J. Hespanha;Raphael Chinchilla;Guosong Yang;Mushuang Liu;J. Shamma;Lacra Pavel
Verification of Adversarially Robust Reinforcement Learning Mechanisms in Aerospace Systems
航空航天系统中对抗性鲁棒强化学习机制的验证
  • DOI:
    10.2514/6.2023-1070
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Seo, Taehwan;Sahoo, Prachi P.;Vamvoudakis, Kyriakos G.
  • 通讯作者:
    Vamvoudakis, Kyriakos G.
An Online Model-Following Projection Mechanism Using Reinforcement Learning
  • DOI:
    10.1109/tac.2023.3243165
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    M. Abouheaf;Hashim A. Hashim-Hashim-A.-Hashim-36452482;M. Mayyas;K. Vamvoudakis
  • 通讯作者:
    M. Abouheaf;Hashim A. Hashim-Hashim-A.-Hashim-36452482;M. Mayyas;K. Vamvoudakis
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kyriakos G Vamvoudakis其他文献

Dynamic Intermittent Feedback Design for H∞ Containment Control on a Directed Graph
有向图上 H 遏制控制的动态间歇反馈设计
  • DOI:
    10.1109/tcyb.2019.2933736
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    11.8
  • 作者:
    Yongliang Yang;Hamidreza Modares;Kyriakos G Vamvoudakis;Yixin Yin;Donald C Wunsch
  • 通讯作者:
    Donald C Wunsch

Kyriakos G Vamvoudakis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kyriakos G Vamvoudakis', 18)}}的其他基金

Collaborative Research: CPS: Medium: Wildland Fire Observation, Management, and Evacuation using Intelligent Collaborative Flying and Ground Systems
协作研究:CPS:中:使用智能协作飞行和地面系统进行荒地火灾观测、管理和疏散
  • 批准号:
    2038589
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: Towards an Intermittent Learning Framework for Smart and Efficient Cyber-Physical Autonomy
职业:走向智能高效的网络物理自治的间歇性学习框架
  • 批准号:
    1750789
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
CAREER: Towards an Intermittent Learning Framework for Smart and Efficient Cyber-Physical Autonomy
职业:走向智能高效的网络物理自治的间歇性学习框架
  • 批准号:
    1851588
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant

相似国自然基金

CPs/MOFs介导多烯衍生物拓扑光聚合的高立体选择性构建策略研究
  • 批准号:
    22361004
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
尿素循环关键酶CPS1表达异常在肺癌转移中的作用和机制研究
  • 批准号:
    82273390
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
面向智能交通认知的CPS计算架构与可解释深度学习模型研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
GPER通过“barcode”磷酸化修饰调控β-arrestin/SH3-CPs信号介导肺腺癌EGFR-TKI原发耐药的机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
尿素循环限速酶CPS1异常介导代谢重编程调控肝癌发生的功能机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    54.7 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420846
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322534
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420847
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Small: Risk-Aware Planning and Control for Safety-Critical Human-CPS
合作研究:CPS:小型:安全关键型人类 CPS 的风险意识规划和控制
  • 批准号:
    2423130
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322533
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了