Collaborative Research: Novel silicon-based optoelectronic materials
合作研究:新型硅基光电材料
基本信息
- 批准号:2226700
- 负责人:
- 金额:$ 15.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-11-01 至 2025-10-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Nontechnical description: Silicon is an essential semiconductor for the majority of modern electronic and solar-energy devices. Nevertheless, the normal crystalline structure of silicon that is currently used has physical properties that limit light absorption/emission processes and other advanced technological applications. In contrast, different crystalline forms of silicon with alternative physical properties can overcome these challenges and impact a range of technologies including solid-state detectors, optical communication, and energy conversion devices, while simultaneously maintaining the intrinsic advantages of silicon, such as natural abundance and low toxicity. This collaborative research project aims to develop and discover completely new crystalline structures of silicon and silicon-based compounds with enhanced and/or complementary optical and electronic properties using a joint theoretical and experimental strategy. Research is focused on developing recently discovered crystalline forms of silicon, and on revealing novel synthetic approaches to achieve additional silicon-based materials with computational guidance. In contrast to conventional synthetic approaches that take place at high temperatures and low pressures, access to new silicon structures in this project is enabled by the utilization of very high pressures (up to one hundred thousand times atmospheric pressure) and moderate temperatures. These unique processing conditions provide access to new silicon structures possessing a range of physical properties that extend beyond those of the normal form of silicon that is currently used. This research project is executed within an educational environment that promotes the academic development of students and postdoctoral scholars and emphasizes science, technology, engineering and math (STEM) career trajectories. The methodologies developed for this project are expected to be generalizable to other classes of materials beyond silicon. Technical description: Modern computational methods predict the existence of new materials and their properties with remarkable accuracy. Nevertheless, practical synthetic strategies are needed to access a plethora of hypothetical materials with superlative properties. This collaborative research project explores the depth of realizable materials for silicon and probes the relationships between metastable allotropes/compounds and optoelectronic properties in order to achieve new structures of silicon with properties that exceed or complement the normal diamond-cubic form. Accompanying the development of two novel silicon allotropes (Si24 and 4H-Si) via crystal growth, doping, strain engineering and properties optimization, the discovery of additional silicon allotropes and compounds is enabled using unique high-pressure synthetic methods guided by ab initio transition pathway and structure searching predictions. The comprehensive exploration of complex potential energy surfaces is facilitated through the development of computationally efficient machine learning methodologies. The research expands the library of synthetic routes to kinetically controlled silicon-based materials using novel precursors, and the intrinsic optical and electronic transport properties of new silicon allotropes and compounds are determined experimentally. The overall goal of the project is to produce and characterize new silicon phases with enhanced optoelectronic function and the potential to inform next-generation technology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:硅是大多数现代电子和太阳能设备的必不可少的半导体。然而,当前使用的硅的正常晶体结构具有限制光吸收/发射过程和其他先进技术应用的物理特性。相比之下,具有替代物理特性的硅的不同晶体形式可以克服这些挑战,并影响一系列技术,包括固态探测器,光学通信和能量转换设备,同时维持硅的内在优势,例如自然丰富性和低毒性。该协作研究项目旨在使用联合理论和实验策略开发和发现具有增强和/或互补光学和电子性能的硅和基于硅化合物的全新结晶结构。研究的重点是开发最近发现的硅晶体形式,并揭示新的合成方法,以使用计算指导获得其他基于硅的材料。与在高温和低压下发生的常规合成方法相反,通过使用非常高的压力(大气压力多达十万倍)和中等温度,可以在该项目中获得新的硅结构。这些独特的加工条件可访问具有具有一系列物理特性的新硅结构,这些物理特性范围超出了当前使用的正常形式的硅形式。该研究项目是在促进学生和博士后学者的学术发展的教育环境中执行的,并强调科学,技术,工程和数学(STEM)职业轨迹。预计为该项目开发的方法可以推广到硅以外的其他材料。 技术描述:现代计算方法以显着的精度预测了新材料及其性质的存在。然而,需要实用的合成策略来访问具有最高特性的大量假设材料。该协作研究项目探索了可实现的硅的深度,并探究了亚稳态同素异形体/化合物和光电特性之间的关系,以实现具有超过或补充正常钻石 - 钻石 - 钻石形式的硅的新结构。通过晶体生长,掺杂,应变工程和特性优化,伴随两种新型硅同素异肌(SI24和4H-SI)的发展,使用独特的高压力合成方法启用了其他硅同素同素同素和化合物的发现。通过开发计算高效的机器学习方法,可以促进对复杂势能表面的全面探索。该研究将合成途径的库扩展到了动力学控制的硅材料,并使用新的前体扩展了基于硅的材料,并通过实验确定了新的硅同二氧化硅和化合物的内在光学和电子传输性能。该项目的总体目标是通过增强的光电功能来生产和表征新的硅阶段,并有可能为下一代技术提供信息。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响来通过评估来获得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li Zhu其他文献
MicroRNA-143a-3p modulates preadipocyte proliferation and differentiation by targeting MAPK7
MicroRNA-143a-3p 通过靶向 MAPK7 调节前脂肪细胞增殖和分化
- DOI:
10.1016/j.biopha.2018.09.080 - 发表时间:
2018 - 期刊:
- 影响因子:7.5
- 作者:
Peiwen Zhang;Jingjing Du;Linghui Wang;Lili Niu;Ye Zhao;Guoqing Tang;Yanzhi Jiang;Surong Shuai;Lin Bai;Xuewei Li;Jinyong Wang;Shunhua Zhang;Li Zhu - 通讯作者:
Li Zhu
An Integrated Train–Ground Communication System Using Wireless Network Virtualization: Security and Quality of Service Provisioning
使用无线网络虚拟化的综合列车地面通信系统:服务供应的安全性和质量
- DOI:
10.1109/tvt.2016.2597153 - 发表时间:
2016-08 - 期刊:
- 影响因子:6.8
- 作者:
Li Zhu;F. Richard Yu;Tao Tang;Bin Ning - 通讯作者:
Bin Ning
A New Fabrication Method for Paper-Based Microfluidic Device Used in Bio-Assay
一种用于生物测定的纸基微流控装置的新制造方法
- DOI:
10.4028/www.scientific.net/kem.562-565.601 - 发表时间:
2013-07 - 期刊:
- 影响因子:0
- 作者:
Zong'an Li;Liya Hou;Weiyi Zhang;Li Zhu - 通讯作者:
Li Zhu
Molecular Cloning and Expression of a Squalene Epoxidase Gene from Ilex cornuta
冬青角鲨烯环氧酶基因的分子克隆与表达
- DOI:
10.3923/biotech.2018.26.34 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Li Zhu;Liangqiong Ma;Feng Xu;Weiwei Zhang - 通讯作者:
Weiwei Zhang
Genomic Analysis of Microbulbifer sp. Strain A4B-17 and the Characterization of Its Metabolic Pathways for 4-Hydroxybenzoic Acid Synthesis
微灯泡基因组分析。
- DOI:
10.3389/fmicb.2018.03115 - 发表时间:
2018-12 - 期刊:
- 影响因子:0
- 作者:
Jun Tian;Li Zhu;Wenjun Wang;Liping Zhang;Zhi Li;Qingyu Zhao;Ke Xing;Zhaozhong Feng;Xue Peng - 通讯作者:
Xue Peng
Li Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
- 批准号:82304677
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
- 批准号:32171163
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
novel_circ_001042/miR-298-5p/Capn1轴调节线粒体能量代谢在先天性肛门直肠畸形发生中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
novel_circ_001042/miR-298-5p/Capn1轴调节线粒体能量代谢在先天性肛门直肠畸形发生中的作用机制研究
- 批准号:82170530
- 批准年份:2021
- 资助金额:55.00 万元
- 项目类别:面上项目
相似海外基金
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
- 批准号:
2347992 - 财政年份:2024
- 资助金额:
$ 15.21万 - 项目类别:
Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
- 批准号:
2347991 - 财政年份:2024
- 资助金额:
$ 15.21万 - 项目类别:
Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
- 批准号:
2346198 - 财政年份:2024
- 资助金额:
$ 15.21万 - 项目类别:
Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
- 批准号:
2346197 - 财政年份:2024
- 资助金额:
$ 15.21万 - 项目类别:
Standard Grant
DULCE (Diabetes InqUiry Through a Learning Collaborative Experience)
DULCE(通过学习协作体验进行糖尿病查询)
- 批准号:
10558119 - 财政年份:2023
- 资助金额:
$ 15.21万 - 项目类别: