Collaborative Research: SitS: Collaborative: Long Range Wirelessly Powered Multi-variable Sensor Network for Continuous Monitoring of the Soil Health
协作研究:SitS:协作:用于连续监测土壤健康的远程无线供电多变量传感器网络
基本信息
- 批准号:2226614
- 负责人:
- 金额:$ 39.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award was made through the "Signals in the Soil (SitS)" solicitation, a collaborative partnership between the National Science Foundation and the United States Department of Agriculture National Institute of Food and Agriculture (USDA NIFA). An urgent need exists for developing inexpensive, long-term deployable sensors that can monitor variable soil conditions in real-time. Understanding the parameters that control the soil health is extremely important in managing the growth and productivity of plants as well as in maintaining soil health. One of the biggest issues associated with new sensors is delivering the power needed to operate the sensors, especially if they are intended to be left buried for long periods of time. This project aims to develop a multi-modal integrated sensor system that can be completely buried 15 cm or deeper in the soil for real-time monitoring of soil gas flows, such as carbon dioxide, ammonia, oxygen, and nitrous oxide, that gives information about soil and plant health. All the electrical power needed for the sensor operation, as well as the signal communication from the sensor, will be delivered using a through-the-soil (TTS) power transmission technique, where electrical energy is sent through the soil, eliminating the need for wires, surface antennas, or embedded batteries. Using TTS power transfer, an agricultural field can be permanently instrumented with sensors without interfering with daily farming operations. Analyzing the collected data will provide key insights related to soil health. This collaborative project involving researchers at Tennessee Technological University, the University of Tennessee Knoxville, and State University of New York at Buffalo will produce new knowledge and engineering techniques that will enhance the abilities of farmers to make better decisions in the growing cycle of crops. This impact alone will reduce waste, improve crop yield, and ultimately generate greater economic income for the Nation and its farmers. The objective of this project is to conduct research toward developing the next-generation of in-situ, networked, multi-modal measurement systems for continuous and uninterrupted monitoring of soil variables over variable space and time periods. Contemporary low-cost soil monitoring systems are discrete and are incapable of detecting soil chemical variables beyond pH. The first project goal is to develop a sensor system that analyzes the vapor phase analytes outgassed during biological processes that characterize soil health. The multi-modal sensor system utilizes three orthogonal physical properties combined into a single platform to detect the analyte vapors with high chemical selectivity and sensitivity in real-time. First and second physical properties use arrays of receptor-immobilized micro-cantilevers to preconcentrate and detect mass changes. The third orthogonal method uses the same arrays to discern the molecular identity of adsorbed gases using photothermal deflection spectroscopy (PDS). These chemically specific, extremely sensitive, and highly compact sensors will be integrated with conventional soil sensing systems that detect moisture, temperature, and pH to create a multi-sensing probe. The second project goal is to power the sensor system using the TTS power transmission technique capable of transferring energy from an electrical power source to a plurality of multi-sensing probes over wide landscape scale areas. The aim is to provide the sensor systems with a stable, uninterruptable source of power to achieve a continuous sensor operation that does not require maintenance and is not susceptible to interferences. The wireless transmission will be accomplished by the excitation of a non-radiating pulsed conduction mode of propagation at radio frequencies. The third project goal is to analyze the data from the wirelessly powered, multi-sensor probe network in order to build predictive algorithms needed to characterize soil health and make critical growing decisions. The research goals of this project will be transformative in broadening understanding of soil health and lead to better environmental practices and enhanced agricultural production. The data and knowledge uncovered during the project will have profound impacts in many areas of science, engineering, and industry. The outcomes of this work include: (1) A historical first in real-time collection of physiochemical specific data in a high spatial and temporal density over a landscape size area and (2) Demonstration of a completely new method of wireless electrical power transmission over a landscape area. Such an engineering achievement will not only have a transformative impact in soil science and agriculture, but in other fields, including renewable energy, power distribution, and national security.This collaborative research project is co-funded by the Chemical, Bioengineering, Environmental and Transport (CBET) Division in the Engineering Directorate, the Chemistry (CHE) Division in the Directorate for Mathematical and Physical Sciences, the Information and Intelligent Systems (IEE) Division in the Directorate for Computer and Information Science and Engineering, and the Office of Polar Programs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项是通过“土壤信号(SitS)”征集获得的,该征集是美国国家科学基金会和美国农业部国家食品和农业研究所(USDA NIFA)之间的合作伙伴关系。迫切需要开发廉价、长期可部署的传感器来实时监测可变的土壤状况。了解控制土壤健康的参数对于管理植物的生长和生产力以及维持土壤健康极其重要。与新传感器相关的最大问题之一是提供操作传感器所需的电力,特别是如果它们打算长期埋在地下的话。该项目旨在开发一种多模态集成传感器系统,可完全埋入土壤15厘米或更深,实时监测土壤气体流量,如二氧化碳、氨、氧气和一氧化二氮等,并提供信息关于土壤和植物健康。传感器运行所需的所有电力以及传感器的信号通信都将使用透土 (TTS) 电力传输技术来传输,其中电能通过土壤发送,从而无需电线、表面天线或嵌入式电池。使用 TTS 电力传输,农田可以永久安装传感器,而不会干扰日常农业作业。分析收集到的数据将提供与土壤健康相关的重要见解。该合作项目涉及田纳西理工大学、田纳西大学诺克斯维尔分校和纽约州立大学布法罗分校的研究人员,将产生新的知识和工程技术,提高农民在作物生长周期中做出更好决策的能力。仅这种影响就可以减少浪费,提高作物产量,并最终为国家及其农民带来更多的经济收入。该项目的目标是进行研究,开发下一代原位、网络化、多模式测量系统,以便在可变空间和时间段内连续不间断地监测土壤变量。当代低成本土壤监测系统是离散的,无法检测 pH 值以外的土壤化学变量。第一个项目目标是开发一种传感器系统,用于分析表征土壤健康的生物过程中释放的气相分析物。多模态传感器系统利用三个正交物理特性组合成一个平台,以高化学选择性和灵敏度实时检测分析物蒸气。第一和第二物理特性使用受体固定的微悬臂梁阵列来预浓缩和检测质量变化。第三种正交方法使用相同的阵列,通过光热偏转光谱 (PDS) 来辨别吸附气体的分子特性。这些化学特异性、极其灵敏且高度紧凑的传感器将与检测湿度、温度和 pH 值的传统土壤传感系统集成,以创建多传感探头。第二个项目目标是使用 TTS 电力传输技术为传感器系统供电,该技术能够将能量从电源传输到广阔景观范围内的多个多传感探头。目的是为传感器系统提供稳定、不间断的电源,以实现传感器的连续运行,无需维护且不易受到干扰。无线传输将通过激励射频下的非辐射脉冲传导传播模式来完成。第三个项目目标是分析来自无线供电的多传感器探针网络的数据,以构建描述土壤健康特征和做出关键生长决策所需的预测算法。该项目的研究目标将在扩大对土壤健康的理解方面具有变革性,并带来更好的环境实践和提高农业生产。该项目期间发现的数据和知识将对科学、工程和工业的许多领域产生深远的影响。这项工作的成果包括:(1)历史性地首次在景观大小区域内以高空间和时间密度实时收集物理化学特定数据;(2)演示了一种全新的无线电力传输方法。一个景观区。这样的工程成就不仅会对土壤科学和农业产生变革性影响,而且还会对其他领域产生变革性影响,包括可再生能源、配电和国家安全。该合作研究项目由化学、生物工程、环境和运输学院共同资助工程局(CBET)处、数学和物理科学局化学(CHE)处、计算机和信息科学与工程局信息与智能系统(IEE)处以及极地项目办公室.这个奖项体现了通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Thundat其他文献
Adsorbate deformation as a contrast mechanism in STM images of biopolymers in an aqueous environment: images of the unstained, hydrated DNA double helix
吸附变形作为水环境中生物聚合物 STM 图像的对比机制:未染色、水合 DNA 双螺旋的图像
- DOI:
- 发表时间:
- 期刊:
- 影响因子:2
- 作者:
Stuart Lindsay;Thomas Thundat;L. Nagahara - 通讯作者:
L. Nagahara
Tunable Shape Memory Polymer with Adhesive Property at Body Temperature for Shape Conformable Wearable Sensor Skins
具有体温粘合性的可调谐形状记忆聚合物,用于形状一致的可穿戴传感器皮肤
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
MD Nahin Islam Shiblee;Kumkum Ahmed;Larry A. Nagahara;Thomas Thundat;Masaru Kawakami;Ajit Khosla;Hidemitsu Furukawa - 通讯作者:
Hidemitsu Furukawa
Boron Doped Laser-Induced Graphene: A Suitable Substrate for Flexible and Wearable Sensor and Supercapacitor
掺硼激光诱导石墨烯:适用于柔性可穿戴传感器和超级电容器的基材
- DOI:
10.1109/lsens.2024.3375286 - 发表时间:
2024 - 期刊:
- 影响因子:2.8
- 作者:
Himanshi Awasthi;B. P. Rao;Thomas Thundat;S. Goel - 通讯作者:
S. Goel
Shape Conformable Flexible Sensors for Internet of Things (IoT): A Perspective
用于物联网 (IoT) 的形状一致的柔性传感器:视角
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Ajit Khosla;Kumkum Ahmed;MD Nahin Islam Shiblee;Thomas Thundat;Larry A. Nagahara;Hidemitsu Furukawa - 通讯作者:
Hidemitsu Furukawa
Thomas Thundat的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Thundat', 18)}}的其他基金
EAGER SitS: A Multi-Sensor Probe Network for Continuous Monitoring of the Soil Health
EAGER SitS:用于连续监测土壤健康的多传感器探针网络
- 批准号:
1841465 - 财政年份:2018
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
相似国自然基金
动态坐姿对人椅交互作用的干预机理研究
- 批准号:52305324
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
坐姿和皮肤微环境在脊髓损伤患者中的压疮机制研究及风险预警
- 批准号:32301087
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
0-20Hz侧倾振动下坐姿人体生物动力学特性研究
- 批准号:51705357
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
生物电阻抗特性用于早期检测振动和强迫坐姿引起直升机飞行员颈腰痛的新技术研究
- 批准号:81601636
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
基于虚拟现实技术的人体坐姿舒适性评价理论研究
- 批准号:51465056
- 批准年份:2014
- 资助金额:48.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: SitS: Improving Rice Cultivation by Observing Dynamic Soil Chemical Processes from Grain to Landscape Scales
合作研究:SitS:通过观察从谷物到景观尺度的动态土壤化学过程来改善水稻种植
- 批准号:
2226647 - 财政年份:2023
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
Collaborative Research: SitS: Improving Rice Cultivation by Observing Dynamic Soil Chemical Processes from Grain to Landscape Scales
合作研究:SitS:通过观察从谷物到景观尺度的动态土壤化学过程来改善水稻种植
- 批准号:
2226648 - 财政年份:2023
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
Collaborative Research: SitS: Improving Rice Cultivation by Observing Dynamic Soil Chemical Processes from Grain to Landscape Scales
合作研究:SitS:通过观察从谷物到景观尺度的动态土壤化学过程来改善水稻种植
- 批准号:
2226649 - 财政年份:2023
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
Collaborative Research: SitS: Collaborative: Long Range Wirelessly Powered Multi-variable Sensor Network for Continuous Monitoring of the Soil Health
协作研究:SitS:协作:用于连续监测土壤健康的远程无线供电多变量传感器网络
- 批准号:
2226612 - 财政年份:2022
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
Collaborative Research: SitS: Collaborative: Long Range Wirelessly Powered Multi-variable Sensor Network for Continuous Monitoring of the Soil Health
协作研究:SitS:协作:用于连续监测土壤健康的远程无线供电多变量传感器网络
- 批准号:
2226613 - 财政年份:2022
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant