CDS&E: A Machine Learning Architecture for General, Reusable Models for Guest-Host Chemical Bonding

CDS

基本信息

  • 批准号:
    2154952
  • 负责人:
  • 金额:
    $ 42.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-15 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Matthew M. Montemore of Tulane University is jointly funded by an award from the Chemical Theory, Models and Computational Methods program in the Division of Chemistry, and the Established Program to Stimulate Competitive Research (EPSCoR) to develop a new, more efficient machine learning framework for chemistry and materials science. While machine-learning has been very useful for efficient screening of molecules and materials, previous approaches generally require a new machine learning model for each application. For example, a machine learning model that is used to design one type of battery can usually not be used for other types of batteries. Creating a new model from scratch for each battery type requires significant time and effort to generate data and perform fitting. In the work supported here, Dr. Montemore and his research group will develop the capability to generate machine learning models that can be reused for many applications; for example, a single model could be used for designing many types of batteries. Broadly, this will be useful in many areas of chemistry and materials science, and the Montemore group will release user-friendly code and models to allow other research groups to effectively leverage the framework. Dr. Montemore is also advising the local chapter of the Society for Hispanic Engineers, and working with Louisiana Dow Chemical to provide workshops and mentorship for the membership. Additionally, Dr. Montemore is advising a number of undergraduate researchers, including several from underrepresented groups. The new machine learning architecture that Dr. Montemore and his group will develop here is designed based on chemical principles, such as the existence of elements as discrete entities (and not as part of a continuous space). Briefly, the architecture uses latent (i.e., intermediate) variables to partially decouple different guests and different host elements, which greatly simplifies the learning task for each submodel. This is a significant departure from most screening approaches, which use off-the-shelf ML models to map continuous features onto a target variable and must learn chemical principles during fitting. The architecture is well-suited to handling heterogenous data sets, such as a mixture of computational and experimental data. It also does not require very large data sets, in contrast to deep-learning approaches. The models are often interpretable, as predictions can be explained in terms of latent variables or host features. Finally, the architecture is well-suited to transfer learning, which uses a pre-trained model to accelerate the creation of new models. In summary, this architecture harnesses fundamental chemical principles, especially those present in applications involving guest-host chemical bonding, to significantly increase the efficiency of materials screening. Overall, the primary benefits of this approach are significantly increased speedup in materials screening by allowing reusability, and the possibility of more sophisticated, effective screening by predicting multiple quantities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
杜兰大学的 Matthew M. Montemore 获得化学系化学理论、模型和计算方法项目以及刺激竞争研究既定项目 (EPSCoR) 的联合资助,以开发一种新的、更高效的机器学习框架用于化学和材料科学。虽然机器学习对于有效筛选分子和材料非常有用,但以前的方法通常需要为每个应用建立新的机器学习模型。例如,用于设计一种类型电池的机器学习模型通常不能用于其他类型的电池。从头开始为每种电池类型创建新模型需要大量时间和精力来生成数据和执行拟合。在此支持的工作中,蒙特莫尔博士和他的研究小组将开发生成可重复用于许多应用程序的机器学习模型的能力;例如,单个模型可用于设计多种类型的电池。广泛而言,这将在化学和材料科学的许多领域发挥作用,蒙特莫尔小组将发布用户友好的代码和模型,以允许其他研究小组有效地利用该框架。蒙特莫尔博士还为西班牙裔工程师协会当地分会提供咨询,并与路易斯安那陶氏化学公司合作,为会员提供研讨会和指导。此外,蒙特莫尔博士还为一些本科研究人员提供建议,其中包括一些来自代表性不足群体的研究人员。 Montemore 博士和他的团队将在这里开发的新机器学习架构是基于化学原理设计的,例如元素作为离散实体的存在(而不是作为连续空间的一部分)。简而言之,该架构使用潜在(即中间)变量来部分解耦不同的访客和不同的主机元素,这极大地简化了每个子模型的学习任务。这与大多数筛选方法有很大不同,大多数筛选方法使用现成的 ML 模型将连续特征映射到目标变量,并且必须在拟合过程中学习化学原理。该架构非常适合处理异构数据集,例如计算数据和实验数据的混合。与深度学习方法相比,它也不需要非常大的数据集。这些模型通常是可解释的,因为预测可以用潜在变量或宿主特征来解释。最后,该架构非常适合迁移学习,它使用预先训练的模型来加速新模型的创建。总之,该架构利用基本化学原理,特别是涉及客体化学键合的应用中的化学原理,显着提高材料筛选的效率。总体而言,这种方法的主要好处是通过允许可重用​​性显着提高材料筛选的速度,以及通过预测多个数量进行更复杂、更有效的筛选的可能性。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Latent Variable Machine Learning Framework for Catalysis: General Models, Transfer Learning, and Interpretability
用于催化的潜变量机器学习框架:通用模型、迁移学习和可解释性
  • DOI:
    10.1021/jacsau.3c00419
  • 发表时间:
    2024-01-22
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Kayode, Gbolade O;Montemore, Matthew M
  • 通讯作者:
    Montemore, Matthew M
Bayesian optimization of single-atom alloys and other bimetallics: efficient screening for alkane transformations, CO 2 reduction, and hydrogen evolution
单原子合金和其他双金属的贝叶斯优化:有效筛选烷烃转化、CO 2 还原和析氢
  • DOI:
    10.1039/d3ta02830e
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Gbolade O. Kayode;Avery F. Hill;Matthew M. Montemore
  • 通讯作者:
    Matthew M. Montemore
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Montemore其他文献

Matthew Montemore的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Montemore', 18)}}的其他基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 42.85万
  • 项目类别:
    Standard Grant
CAREER: Computational Design of Single-Atom Sites in Alloy Hosts as Stable and Efficient Catalysts
职业:合金主体中单原子位点的计算设计作为稳定和高效的催化剂
  • 批准号:
    2340356
  • 财政年份:
    2024
  • 资助金额:
    $ 42.85万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向机器人复杂操作的接触形面和抓取策略共适应学习
  • 批准号:
    52305030
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
机器学习驱动的复杂量子系统鲁棒最优控制
  • 批准号:
    62373342
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
机器学习增强的多尺度固体电解质相界面结构预测
  • 批准号:
    22303058
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
机器学习指导构建新型电解液体系实现高性能低温锂离子电池
  • 批准号:
    52303299
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向海量重力卫星观测数据精化处理的机器学习方法研究
  • 批准号:
    42374004
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

CDS&E: Robust Symmetry-Preserving Machine Learning: Theory and Application
CDS
  • 批准号:
    2244976
  • 财政年份:
    2023
  • 资助金额:
    $ 42.85万
  • 项目类别:
    Continuing Grant
CDS&E: Elucidating the Structure and Catalytic Activity of Nanoparticles Under Catalytic Conditions Using Ab Initio Machine Learning Force Fields
CDS
  • 批准号:
    2245120
  • 财政年份:
    2023
  • 资助金额:
    $ 42.85万
  • 项目类别:
    Standard Grant
CDS&E: Machine learning enabled modelling of dynamic nanoparticle catalysts
CDS
  • 批准号:
    2152767
  • 财政年份:
    2022
  • 资助金额:
    $ 42.85万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了