RI: Small: Cooperative Planning and Learning via Scalable and Learnable Multi-Agent Commitments

RI:小型:通过可扩展和可学习的多代理承诺进行合作规划和学习

基本信息

  • 批准号:
    2154904
  • 负责人:
  • 金额:
    $ 33.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Stemming from human societies, the notion of commitment refers to a decision maker, or agent, making credible and prolonged promises about various aspects of the consequences of its future decisions, thus facilitating cooperation with other agents. Engineering commitments is therefore a promising framework to achieve cooperative artificial intelligence (AI) that equips a group of autonomous agents with the capability of planning and learning to maximize their joint utility. This research project seeks to initiate a paradigm shift that brings the notion of commitment to its full potential by scaling it to various dimensions of complexity in cooperative AI, developing novel methods that promise to significantly and positively impact real-world and large-scale cooperative AI applications. This project integrates an array of education initiatives, playing key roles in PI's classes, the recruitment and training of undergraduate students from underrepresented backgrounds, and extensive activities planned to involve high school students and junior researchers.This research consists of two cohesive thrusts: Thrust 1 redesigns an existing approach for commitment-based distributed cooperative planning with a predefined parameterization for probabilistic commitments, by developing novel algorithms and analyses in planning under constraints and uncertainty, approximate linear programming, and robust planning that address long decision horizon and high-dimensional perception and action; Thrust 2 develops and evaluates a novel approach for distributed cooperative learning with emergent commitment parameterization, which combines the best from the framework of multi-agent commitments and deep reinforcement learning to address all aforementioned dimensions of complexity. Success of the proposed research is expected to significantly increase the applicability of commitment-based planning and learning for large-scale and complex cooperative AI systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
承诺的概念源于人类社会,是指决策者或代理人对其未来决策后果的各个方面做出可信且长期的承诺,从而促进与其他代理人的合作。因此,工程承诺是实现协作人工智能(AI)的一个有前途的框架,它使一组自主代理具有规划和学习的能力,以最大化其联合效用。该研究项目旨在发起一种范式转变,通过将承诺概念扩展到合作人工智能的复杂性的各个维度,开发有望对现实世界和大规模合作人工智能产生重大和积极影响的新方法,从而充分发挥承诺概念的潜力。应用程序。该项目整合了一系列教育举措,在 PI 课程中发挥关键作用,招募和培训来自弱势背景的本科生,以及计划让高中生和初级研究人员参与的广泛活动。这项研究由两个有凝聚力的主旨组成: 主旨 1重新设计基于承诺的分布式协作规划的现有方法,通过在约束和不确定性下开发新颖的算法和规划分析、近似线性规划以及解决长决策范围和问题的鲁棒规划,对概率承诺进行预定义参数化。高维度的感知和行动; Thrust 2 开发并评估了一种具有紧急承诺参数化的分布式协作学习新方法,该方法结合了多智能体承诺和深度强化学习框架的最佳优点,以解决上述所有复杂性维度。拟议研究的成功预计将显着提高基于承诺的规划和学习对大规模和复杂的合作人工智能系统的适用性。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和能力进行评估,被认为值得支持。更广泛的影响审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Risk-aware analysis for interpretations of probabilistic achievement and maintenance commitments
用于解释概率成就和维护承诺的风险意识分析
  • DOI:
    10.1016/j.artint.2023.103864
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    14.4
  • 作者:
    Zhang, Qi;Durfee, Edmund H.;Singh, Satinder
  • 通讯作者:
    Singh, Satinder
Context-Aware Bayesian Network Actor-Critic Methods for Cooperative Multi-Agent Reinforcement Learning
用于协作多智能体强化学习的上下文感知贝叶斯网络演员批评家方法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qi Zhang其他文献

Magnetic Anomaly Detection Based on Full Connected Neural Network
基于全连接神经网络的磁异常检测
  • DOI:
    10.1109/access.2019.2943544
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Shuchang Liu;Jiafei Hu;Peisen Li;Chengbiao Wan;Zhuo Chen;M. Pan;Qi Zhang;Zhongyan Liu;Siwei Wang;Dixiang Chen;Jingtao Hu;Xue Pan
  • 通讯作者:
    Xue Pan
Complex text processing by the temporal context machines
时间上下文机器的复杂文本处理
MoRA: High-Rank Updating for Parameter-Efficient Fine-Tuning
MoRA:用于参数高效微调的高阶更新
  • DOI:
    10.48550/arxiv.2405.12130
  • 发表时间:
    2024-05-20
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ting Jiang;Shaohan Huang;Shengyue Luo;Zihan Zhang;Haizhen Huang;Furu Wei;Weiwei Deng;Feng Sun;Qi Zhang;Deqing Wang;Fuzhen Zhuang
  • 通讯作者:
    Fuzhen Zhuang
Pancreatic cystic neoplasms: current and future approaches to identify patients at risk
胰腺囊性肿瘤:当前和未来识别高危患者的方法
  • DOI:
    10.1097/jp9.0000000000000033
  • 发表时间:
    2019-11-22
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qi Zhang;Yiwen Chen;Bai Xueli;T. Liang
  • 通讯作者:
    T. Liang
A material removal model considering the effect of anisotropy on the processing of laser metal deposition Ti-alloy
考虑各向异性对激光金属沉积钛合金加工影响的材料去除模型

Qi Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qi Zhang', 18)}}的其他基金

CAREER: Identifying and Exploiting Multi-Agent Symmetries
职业:识别和利用多智能体对称性
  • 批准号:
    2237963
  • 财政年份:
    2023
  • 资助金额:
    $ 33.24万
  • 项目类别:
    Continuing Grant
CCRI: Planning-C: Planning to Build Digital Infrastructure for Real-Time, Continual, and Intelligent Transportation Analysis and Management
CCRI:Planning-C:规划构建实时、持续、智能交通分析和管理的数字基础设施
  • 批准号:
    2213731
  • 财政年份:
    2022
  • 资助金额:
    $ 33.24万
  • 项目类别:
    Standard Grant
GOALI: Coordination of Multi-Stakeholder Process Networks in a Highly Electrified Chemical Industry
目标:在高度电气化的化工行业中协调多利益相关者流程网络
  • 批准号:
    2215526
  • 财政年份:
    2022
  • 资助金额:
    $ 33.24万
  • 项目类别:
    Standard Grant
Adaptive Robust Optimization with Endogenous Uncertainty and Active Learning in Smart Manufacturing
智能制造中具有内生不确定性和主动学习的自适应鲁棒优化
  • 批准号:
    2030296
  • 财政年份:
    2021
  • 资助金额:
    $ 33.24万
  • 项目类别:
    Standard Grant
CAREER: Optimization-Based Computational Discovery of Decision-Making Processes
职业:基于优化的决策过程计算发现
  • 批准号:
    2044077
  • 财政年份:
    2021
  • 资助金额:
    $ 33.24万
  • 项目类别:
    Continuing Grant
Collaborative Research: Aerosols, Nitrogen Oxides, and Ozone at the Mt. Bachelor Observatory
合作研究:巴赫山天文台的气溶胶、氮氧化物和臭氧
  • 批准号:
    1829803
  • 财政年份:
    2018
  • 资助金额:
    $ 33.24万
  • 项目类别:
    Standard Grant
CAREER:RNA conformational dynamics in the regulation of microRNA biogenesis
职业:RNA 构象动力学在 microRNA 生物发生调控中的作用
  • 批准号:
    1652676
  • 财政年份:
    2017
  • 资助金额:
    $ 33.24万
  • 项目类别:
    Continuing Grant
SGER: Impacts of Air Pollution Controls on Primary and Secondary Aerosols during CAREBEIJING
SGER:CAREBEIJING 期间空气污染控制对一次和二次气溶胶的影响
  • 批准号:
    0840673
  • 财政年份:
    2008
  • 资助金额:
    $ 33.24万
  • 项目类别:
    Standard Grant
Exploiting the giant electrocaloric effect
利用巨大的电热效应
  • 批准号:
    EP/E035043/1
  • 财政年份:
    2007
  • 资助金额:
    $ 33.24万
  • 项目类别:
    Research Grant
Global Solutions of Semilinear Parabolic and Elliptic Equations
半线性抛物型和椭圆方程的全局解
  • 批准号:
    9801271
  • 财政年份:
    1998
  • 资助金额:
    $ 33.24万
  • 项目类别:
    Standard Grant

相似国自然基金

ALKBH5介导的SOCS3-m6A去甲基化修饰在颅脑损伤后小胶质细胞炎性激活中的调控作用及机制研究
  • 批准号:
    82301557
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
miRNA前体小肽miPEP在葡萄低温胁迫抗性中的功能研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
PKM2苏木化修饰调节非小细胞肺癌起始细胞介导的耐药生态位的机制研究
  • 批准号:
    82372852
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于翻译组学理论探究LncRNA H19编码多肽PELRM促进小胶质细胞活化介导电针巨刺改善膝关节术后疼痛的机制研究
  • 批准号:
    82305399
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CLDN6高表达肿瘤细胞亚群在非小细胞肺癌ICB治疗抗性形成中的作用及机制研究
  • 批准号:
    82373364
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

RI: Small: Collaborative Research: Cooperative Autonomous Vehicle Routing under Resource and Localization Constraints
RI:小型:协作研究:资源和本地化约束下的协作自主车辆路由
  • 批准号:
    1736087
  • 财政年份:
    2017
  • 资助金额:
    $ 33.24万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Cooperative Autonomous Vehicle Routing under Resource and Localization Constraints
RI:小型:协作研究:资源和本地化约束下的协作自主车辆路由
  • 批准号:
    1526551
  • 财政年份:
    2015
  • 资助金额:
    $ 33.24万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Cooperative Autonomous Vehicle Routing under Resource and Localization Constraints
RI:小型:协作研究:资源和本地化约束下的协作自主车辆路由
  • 批准号:
    1527748
  • 财政年份:
    2015
  • 资助金额:
    $ 33.24万
  • 项目类别:
    Standard Grant
RI: Small: Acquiring Domain Knowledge from Text through Cooperative Bootstrapping
RI:小型:通过协作引导从文本中获取领域知识
  • 批准号:
    1018314
  • 财政年份:
    2010
  • 资助金额:
    $ 33.24万
  • 项目类别:
    Continuing Grant
RI: Small: Cooperative Coevolutionary Design and Multiagent Systems
RI:小型:协作协同进化设计和多智能体系统
  • 批准号:
    0916870
  • 财政年份:
    2009
  • 资助金额:
    $ 33.24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了