Rutgers Geometric Analysis Conference 2022

罗格斯大学几何分析会议 2022

基本信息

  • 批准号:
    2154782
  • 负责人:
  • 金额:
    $ 3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

This award supports participation in the Rutgers Geometric Analysis Conference held May 16-20, 2022, on the College Avenue Campus of Rutgers, The State University of New Jersey, New Brunswick. The conference is a five-day meeting with a one-day summer school comprising three mini-courses and four days of research talks by twenty-one leading mathematicians from the United States and Europe. The scientific themes of the event include geometric analysis, mathematical physics, and applications to low-dimensional topology and symplectic geometry. The participants will interact with a distinguished and diverse group of mathematical leaders and rising stars. The conference aims to generate transfers of knowledge, new collaborations, and a cross-fertilization of ideas, and further inspire graduate students and early-career mathematicians.There has been exciting recent progress in geometric analysis, mathematical physics, and applications to low-dimensional topology and symplectic geometry. For example, geometric flows are of great current interest due to their many applications. For Ricci flow, there has been progress in understanding the structure of solutions, their singularities, their asymptotic limits, and uniqueness. Flows starting from more general initial data (for example, a metric space, or a manifold with unbounded curvature, or an incomplete metric) are becoming better understood. An improved understanding of Ricci flow may lead to advances in areas such as general relativity, string theory, low-dimensional topology, and renormalization in quantum field theory. Further study of mean curvature flow may lead to advances in general relativity, image processing, material science, and minimal surfaces. The meeting will bring together experts at the frontier of research in these areas from around the world.The conference website is: https://www.sas.rutgers.edu/cms/finmath/geometric-analysis-conf-2022This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持参加 2022 年 5 月 16 日至 20 日在新不伦瑞克新泽西州立大学罗格斯大学学院大道校区举行的罗格斯几何分析会议。此次会议为期五天,并举办为期一天的暑期学校,其中包括三门迷你课程和四天的研究讲座,由来自美国和欧洲的 21 名顶尖数学家参加。该活动的科学主题包括几何分析、数学物理以及低维拓扑和辛几何的应用。参与者将与一群杰出的、多元化的数学领袖和后起之秀进行互动。会议旨在促进知识转移、新的合作和思想的交叉传播,并进一步激励研究生和早期职业数学家。几何分析、数学物理和低维应用方面最近取得了令人兴奋的进展拓扑和辛几何。例如,几何流由于其许多应用而引起了人们的极大兴趣。对于里奇流来说,在理解解的结构、奇点、渐近极限和唯一性方面取得了进展。从更一般的初始数据(例如,度量空间,或具有无界曲率的流形,或不完整度量)开始的流正在变得更好地理解。对里奇流的进一步理解可能会导致广义相对论、弦理论、低维拓扑和量子场论重整化等领域的进步。对平均曲率流的进一步研究可能会促进广义相对论、图像处理、材料科学和极小曲面的进步。此次会议将汇集来自世界各地这些领域研究前沿的专家。会议网站为:https://www.sas.rutgers.edu/cms/finmath/geometric-analysis-conf-2022该奖项反映了 NSF法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Feehan其他文献

RISK FILTERING AND RISK-AVERSE CONTROL OF PARTIALLY OBSERVABLE MARKOV JUMP PROCESSES
部分可观测马尔可夫跳跃过程的风险过滤和风险规避控制
  • DOI:
    10.1016/j.ceramint.2023.01.026
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Ruofan Yan;Ruofan Yan;Paul Feehan;A. Ruszczynski
  • 通讯作者:
    A. Ruszczynski

Paul Feehan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Feehan', 18)}}的其他基金

Frontiers in Geometry Conference 2022
2022 年几何前沿会议
  • 批准号:
    2154823
  • 财政年份:
    2022
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Collaborative Research: Geometric Analysis, Monopoles, and Applications to Low-Dimensional Manifolds
合作研究:几何分析、单极子以及低维流形的应用
  • 批准号:
    2104865
  • 财政年份:
    2021
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Mathematical Finance, Probability, and Partial Differential Equations Conference
数学金融、概率和偏微分方程会议
  • 批准号:
    1713013
  • 财政年份:
    2017
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Geometric Analysis Conferences and Seminars
几何分析会议和研讨会
  • 批准号:
    1611717
  • 财政年份:
    2016
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Collaborative Research: Instantons, Monopoles, and Relations among their Invariants
合作研究:瞬时子、磁单极子及其不变量之间的关系
  • 批准号:
    1510064
  • 财政年份:
    2015
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
AMC-SS: Mathematical Finance and Partial Differential Equations Conference - November 2, 2012
AMC-SS:数学金融和偏微分方程会议 - 2012 年 11 月 2 日
  • 批准号:
    1237722
  • 财政年份:
    2012
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Conference on Mathematical Finance and Partial Differential Equations
数学金融与偏微分方程会议
  • 批准号:
    1059206
  • 财政年份:
    2011
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Mathematical Finance
数学金融
  • 批准号:
    0408269
  • 财政年份:
    2004
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Gauge Theory and the Topology of Smooth Four-Manifolds
规范理论与光滑四流形拓扑
  • 批准号:
    0196361
  • 财政年份:
    2001
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Gauge theory and low-dimensional topology
规范理论和低维拓扑
  • 批准号:
    0125170
  • 财政年份:
    2001
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant

相似国自然基金

基于等几何分析的几何建模及其在结构优化设计中的应用
  • 批准号:
    12371383
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
离散空间上的几何分析理论及其应用
  • 批准号:
    12301064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
复分析与分形几何交叉研究的几个问题
  • 批准号:
    12371072
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
哈密翼龙飞行适应研究——基于颅内模和内耳骨迷路的CT数据及几何形态分析
  • 批准号:
    42302003
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于几何向量的地形分析模型研究
  • 批准号:
    42371407
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: Southern California Geometric Analysis Seminar
会议:南加州几何分析研讨会
  • 批准号:
    2406732
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Conference: Frontiers of Geometric Analysis
会议:几何分析前沿
  • 批准号:
    2347894
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
  • 批准号:
    2348384
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
CAREER: Isoperimetric and Minkowski Problems in Convex Geometric Analysis
职业:凸几何分析中的等周和闵可夫斯基问题
  • 批准号:
    2337630
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了