Noncommutative Analysis in the Theory of Nonlocal Games

非局部博弈论中的非交换分析

基本信息

  • 批准号:
    2154459
  • 负责人:
  • 金额:
    $ 26.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

One of the most intriguing and, at the same time, practically useful features of quantum mechanics is quantum entanglement. It is now known that entanglement allows the accomplishment of operational tasks that are impossible to perform by using classical resources alone. Nonlocal games, originally studied from the perspective of theoretical computer science, have proved to be a useful tool for the study of its power and limitations. This project is aimed at pursuing further the organic links between these combinatorial and probabilistic objects and mathematical analysis on noncommutative structures. The project will contribute to the current large-scale quantization program in mathematics and focuses on the passage from classical to quantum nonlocal games. The work of the project will serve directly the enhancement of interdisciplinarity in pure mathematics, while contributing to the quantum initiatives currently pursued at a number of levels nationally. The project provides research training opportunities for undergraduate and graduate students.The backbone of the project is formed by finitely presented operator systems and C*-algebras, and their tensor products. It develops core operator algebraic techniques and applies them in areas of quantum information theory, studying new operator algebraic concepts arising from quantum and classical graphs, hypergraphs and partial orders. The main objectives are to (i) identify quantum versions of the graph isomorphism games and some of their useful generalizations, and characterize their perfect strategies using operator theory; (ii) develop operator algebraic methods of strategy transfer between games and study a new notion of game equivalence; and (iii) provide closed formulas via operator tensor norms for the optimal probability of winning a given quantum game when the players have access to a strong degree of entanglement. The techniques that will be used to achieve these goals include operator theory, completely bounded and completely positive maps, tensor theory for operator algebras as well as von Neumann algebra theory. The project reveals analytical features of discrete structures with a broad spectrum of applications, such as hypergraphs, introduces a new operator space tensor product, and studies novel operator systems arising from isometric and unitary operators.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子力学最有趣、同时也是最实用的特征之一是量子纠缠。现在我们知道,纠缠可以完成仅使用经典资源无法完成的操作任务。非局域博弈最初是从理论计算机科学的角度进行研究的,已被证明是研究其威力和局限性的有用工具。该项目旨在进一步追求这些组合和概率对象之间的有机联系以及非交换结构的数学分析。该项目将为当前的大规模数学量化计划做出贡献,并重点关注从经典到量子非局域博弈的过渡。该项目的工作将直接服务于增强纯数学的跨学科性,同时为目前在全国多个层面上推行的量子计划做出贡献。该项目为本科生和研究生提供研究培训机会。该项目的骨干由有限呈现的算子系统和 C* 代数及其张量积构成。它开发核心算子代数技术并将其应用于量子信息论领域,研究由量子和经典图、超图和偏序产生的新算子代数概念。主要目标是(i)识别图同构博弈的量子版本及其一些有用的概括,并使用算子理论描述其完美策略; (ii) 开发博弈间策略转移的算子代数方法并研究博弈等价的新概念; (iii) 通过算子张量范数提供封闭公式,以获得当玩家能够获得高度纠缠时赢得给定量子游戏的最佳概率。用于实现这些目标的技术包括算子理论、完全有界和完全正映射、算子代数张量理论以及冯·诺依曼代数理论。该项目揭示了具有广泛应用的离散结构的分析特征,例如超图,引入了新的算子空间张量产品,并研究了由等距算子和酉算子产生的新颖算子系统。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来获得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Synchronicity for quantum non-local games
量子非局域博弈的同步性
  • DOI:
    10.1016/j.jfa.2022.109738
  • 发表时间:
    2021-06-22
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Michael Brannan;Samuel J. Harris;I. Todorov;L. Turowska
  • 通讯作者:
    L. Turowska
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ivan Todorov其他文献

Design of flexible piezoelectric energy harvesting device with optimized performance
性能优化的柔性压电能量收集装置设计
  • DOI:
    10.31031/rdms.2018.05.000607
  • 发表时间:
    2018-09-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Kolev;Mariya Aleks;rova;rova;Ivan Todorov;M. Zahariev;P. Mladenov;K. Denishev
  • 通讯作者:
    K. Denishev
Do the NMS-10 Develop Sustainably in the EU? A Kuznets Curve Approach
NMS-10 在欧盟可持续发展吗?
Βιογραφικό Σημείωμα
Βιογραφικό Σnμείωμα
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ivan Todorov
  • 通讯作者:
    Ivan Todorov

Ivan Todorov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ivan Todorov', 18)}}的其他基金

CIF: Small: Fundamental limits in ambiguous communication
CIF:小:模糊沟通的基本限制
  • 批准号:
    2115071
  • 财政年份:
    2021
  • 资助金额:
    $ 26.11万
  • 项目类别:
    Standard Grant
Zero-error quantum information and operator theory: emerging links
零错误量子信息和算子理论:新兴链接
  • 批准号:
    EP/K032763/1
  • 财政年份:
    2013
  • 资助金额:
    $ 26.11万
  • 项目类别:
    Research Grant
Operator Multipliers
运算符乘数
  • 批准号:
    EP/D050677/1
  • 财政年份:
    2006
  • 资助金额:
    $ 26.11万
  • 项目类别:
    Research Grant

相似国自然基金

融合检监测数据与有限元自动建模的桥梁结构分析评估理论
  • 批准号:
    52378289
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于小增益理论的物联网聚合计算鲁棒稳定性分析
  • 批准号:
    62303112
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
泛在可解释知识融合的无损检测数据智能分析理论与方法研究
  • 批准号:
    52375513
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
高比例新能源电力系统阻尼特性概率分析与柔性控制协同优化理论与方法
  • 批准号:
    52377125
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
高强钢板梁腐蚀后时变极限承载力退化机理及分析理论
  • 批准号:
    52308143
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Noncommutative Analysis with Applications to Quantum Information Theory
非交换分析及其在量子信息论中的应用
  • 批准号:
    2154903
  • 财政年份:
    2022
  • 资助金额:
    $ 26.11万
  • 项目类别:
    Standard Grant
Noncommutative Szego Theory, Moment Problems, and Related Problems in Noncommutative Analysis
非交换 Szego 理论、矩问题以及非交换分析中的相关问题
  • 批准号:
    2751175
  • 财政年份:
    2022
  • 资助金额:
    $ 26.11万
  • 项目类别:
    Studentship
Free Analysis: Exploring the Interactions between Operator Theory and Noncommutative Function Theory
自由分析:探索算子理论与非交换函数论之间的相互作用
  • 批准号:
    2154494
  • 财政年份:
    2022
  • 资助金额:
    $ 26.11万
  • 项目类别:
    Standard Grant
A New Approach and Development to Singular Integrals in Noncommutative Harmonic Analysis - Fusion of Real Analysis and Representation Theory
非交换调和分析中奇异积分的新方法和发展——实分析与表示论的融合
  • 批准号:
    20K03638
  • 财政年份:
    2020
  • 资助金额:
    $ 26.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Noncommutative Analysis and Functional Analytic Group Theory
非交换分析和泛函分析群论
  • 批准号:
    17K05277
  • 财政年份:
    2017
  • 资助金额:
    $ 26.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了