Collaborative Research: Data-driven Power Systems Control with Stability Guarantees
合作研究:数据驱动的电力系统控制与稳定性保证
基本信息
- 批准号:2154171
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-15 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This NSF project aims to design a new data-driven power system control framework with stability guarantee. Power systems are experiencing a period of rapid changes due to the proliferation of renewable generation and distributed energy resources including solar, electric vehicles, and batteries. Many of these new technologies are interfaced with the grid through power electronic interfaces (i.e., inverters) that can be controlled at a much faster timescale compared to conventional machines. However, how to leverage such flexibility is nontrivial due to the nonlinearity, complexity, and uncertainty in the underlying power network. This project will bring transformative changes by developing new reinforcement learning (RL) algorithms for inverter-based frequency and voltage control with formal stability guarantees. The intellectual merits of the project include (i) a novel framework that bridges Lyapunov control theory and RL, therefore providing stability guarantee for learning-based controllers; (ii) neural network structure design that ensures stability constraint is met by design. The broader impacts of the project include various of new courses development and research opportunities for students interested in both energy systems and machine learning/AI.The proposed research consists of three thrusts. Thrust 1 focuses on developing the algorithmic framework that integrates RL with Lyapunov stability constraints, which serves as a foundation to later thrusts. Specifically, we will leverage analytical models to construct Lyapunov functions and engineer the structure of neural network-based controllers to meet the stability constraints. Thrust 2 uses machine learning to discover new Lyapunov functions for realistic power system models and design stable control policies. Thrust 3 integrates the theory and algorithms developed in Thrusts 1 and 2, and robustifies the controllers against modeling error, and network topology re-configurations in both transmission and distribution grids. The contributions of the project are two-folded. On the theoretical side, the proposed research bridges classic control and learning, where control theory provides the structural constraints that guarantee a controller is stable, and RL with neural networks searches over the large parametric spaces to find the best performing controllers that have this structure. On the practical side, our approach clears a critical hurdle in applying RL to power systems by guaranteeing the stability of the learned policy. We envision our framework will serve as the basis for future learning-based smart power system control architectures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该NSF项目旨在设计一种新的数据驱动的、具有稳定性保证的电力系统控制框架。由于可再生能源发电和分布式能源(包括太阳能、电动汽车和电池)的激增,电力系统正在经历一个快速变化的时期。许多新技术通过电力电子接口(即逆变器)与电网连接,与传统机器相比,这些新技术可以以更快的时间尺度进行控制。然而,由于底层电力网络的非线性、复杂性和不确定性,如何利用这种灵活性并非易事。该项目将通过开发新的强化学习 (RL) 算法来实现基于逆变器的频率和电压控制,并提供正式的稳定性保证,从而带来变革。该项目的智力优势包括(i)一个连接Lyapunov控制理论和RL的新颖框架,从而为基于学习的控制器提供稳定性保证; (ii)神经网络结构设计,确保设计满足稳定性约束。该项目更广泛的影响包括为对能源系统和机器学习/人工智能感兴趣的学生提供各种新课程开发和研究机会。拟议的研究包括三个主旨。 Thrust 1 专注于开发将 RL 与 Lyapunov 稳定性约束相结合的算法框架,作为后续 Thrust 的基础。具体来说,我们将利用分析模型构建李亚普诺夫函数并设计基于神经网络的控制器的结构以满足稳定性约束。 Thrust 2 使用机器学习来发现现实电力系统模型的新李亚普诺夫函数并设计稳定的控制策略。 Thrust 3 集成了 Thrusts 1 和 2 中开发的理论和算法,并针对建模误差以及输电和配电网中的网络拓扑重新配置增强了控制器。该项目的贡献有两个方面。在理论方面,所提出的研究将经典控制和学习联系起来,其中控制理论提供了保证控制器稳定的结构约束,而带有神经网络的强化学习在大型参数空间中进行搜索,以找到具有这种结构的最佳性能控制器。在实践方面,我们的方法通过保证学习策略的稳定性,清除了将强化学习应用于电力系统的关键障碍。我们设想我们的框架将成为未来基于学习的智能电力系统控制架构的基础。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stability Constrained Reinforcement Learning for Real-Time Voltage Control
用于实时电压控制的稳定性约束强化学习
- DOI:10.23919/acc53348.2022.9867476
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Shi, Yuanyuan;Qu, Guannan;Low, Steven;Anandkumar, Anima;Wierman, Adam
- 通讯作者:Wierman, Adam
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guannan Qu其他文献
Distributed Optimal Voltage Control With Asynchronous and Delayed Communication
具有异步和延迟通信的分布式最优电压控制
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:9.6
- 作者:
S. Magnússon;Guannan Qu;Na Li - 通讯作者:
Na Li
Deep Reinforcement Learning-Based Spatiotemporal Decision of Utility-Scale Highway Portable Energy Storage Systems
基于深度强化学习的公用事业规模高速公路便携式储能系统时空决策
- DOI:
10.1109/tia.2023.3274729 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:4.4
- 作者:
Yongkang Ding;Guannan Qu;Xinjiang Chen;Jianxiao Wang;Jie Song;Guannan He - 通讯作者:
Guannan He
Equipping Black-Box Policies with Model-Based Advice for Stable Nonlinear Control
为黑盒策略配备基于模型的建议以实现稳定的非线性控制
- DOI:
10.48550/arxiv.2206.01341 - 发表时间:
2022-06-02 - 期刊:
- 影响因子:0
- 作者:
Tongxin Li;Ruixiao Yang;Guannan Qu;Yiheng Lin;S. Low;A. Wierman - 通讯作者:
A. Wierman
Elastic scaling of virtual clusters in cloud data center networks
云数据中心网络中虚拟集群的弹性扩展
- DOI:
10.1109/pccc.2017.8280437 - 发表时间:
2017-12-01 - 期刊:
- 影响因子:0
- 作者:
Shuaibing Lu;Zhiyi Fang;Jie Wu;Guannan Qu - 通讯作者:
Guannan Qu
Accelerated Distributed Nesterov Gradient Descent for smooth and strongly convex functions
用于平滑和强凸函数的加速分布式 Nesterov 梯度下降
- DOI:
10.1109/allerton.2016.7852231 - 发表时间:
2016-09-01 - 期刊:
- 影响因子:0
- 作者:
Guannan Qu;Na Li - 通讯作者:
Na Li
Guannan Qu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guannan Qu', 18)}}的其他基金
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
- 批准号:
2339112 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似国自然基金
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
网络空间中基于泛配置类数据的协作性恶意行为识别研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于无人机遥感成像及分布式数据协作的光伏发电预测理论研究
- 批准号:51907151
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
面向协作式云计算的数据完整性验证理论与方法研究
- 批准号:61702379
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
面向多学科协作的数据世系建模及溯源关键问题研究
- 批准号:U1630115
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:联合基金项目
相似海外基金
Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
- 批准号:
2324711 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
- 批准号:
2325838 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
- 批准号:
2323084 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
- 批准号:
2347992 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant