CMMI-EPSRC: Quantitative Characterization of Mission Critical Microstructures of Engineering Metals with Diffusive Ultrasound

CMMI-EPSRC:利用扩散超声波对工程金属的关键微观结构进行定量表征

基本信息

  • 批准号:
    2225215
  • 负责人:
  • 金额:
    $ 59.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

This award is funded through the NSF Directorate for Engineering - UKRI Engineering and Physical Sciences Research Council Lead Agency (ENG-EPSRC) Opportunity, a collaborative solicitation between NSF and the Engineering and Physical Sciences Research Council (EPSRC) of United Kingdom Research and Innovation (UKRI). It will fund research that enables reliable assurance of safety-critical metal components, for example those used in the aerospace and nuclear power industries, thereby promoting the progress of science, and advancing the national prosperity and welfare. Thermomechanical processes that occur during manufacturing of metal parts result in grain microstructures that dictate strength, fatigue life, and creep and corrosion resistance. It is essential that these microstructures be carefully controlled during production and non-destructively characterized once a component is finished. Although ultrasound technology is the only practical means to access internal material properties, it has seen very limited industrial usage, as accurate interpretation of ultrasonic signals in terms of such microstructure remains an unsolved problem. Alternative techniques that rely on destructive testing of sacrificial samples after elaborate preparation are recognized as inadequate, as evidenced for example by failures of aircraft engines. This project will overcome these shortcomings by advancing a new method of interpreting ultrasonic wave scattering due to microstructural texture and inhomogeneities, potentially revolutionizing the use of non-destructive, contactless, ultrasonic characterization throughout production and in service, at elevated temperatures and on complex shapes. This capability will support the growth of new advanced manufacturing processes, whose vital need of quality control and assurance on complex geometries is currently only partially met. Collaboration with Dr. Bo Lan of Imperial College London will provide opportunities for international research exchange and training of postdoctoral scientists, as well as routes for industry outreach facilitated through the United Kingdom Research Centre in Nondestructive Evaluation.This research aims to make fundamental contributions to the development of an ultrasonic diffuse wave field method that enables volumetric characterization of mission critical microstructure of engineering metals. It will achieve this objective by designing and calibrating experimental transduction mechanisms and signal processing techniques for extracting the full Green’s tensor from the diffuse wave field on different sample geometries, and relating properties of diffusivity, attenuation, and scattering to microstructure-related properties. Further, a general multiple scattering theory will be derived in combination with radiative transfer theory, to account for the effects of texture and microstructures on coherent waves and to describe the incoherent wave diffusion. Computational models of such wave diffusion will be validated against experimental results and used to construct a knowledge database of quantitative linkages between the diffuse wave field and material microstructures. Finally, a robust inversion method will be developed for deducing critical microstructural properties from the diffuse wave field data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项由 NSF 工程理事会 - UKRI 工程和物理科学研究委员会牵头机构 (ENG-EPSRC) 机会资助,这是 NSF 与英国研究与创新工程和物理科学研究委员会 (EPSRC) 之间的合作征集( UKRI)将资助能够可靠保证安全关键金属部件(例如航空航天和核电行业中使用的金属部件)的研究,从而促进科学进步,并促进国家繁荣和福利。金属零件的制造会产生决定强度、疲劳寿命以及抗蠕变性和耐腐蚀性的晶粒微观结构,但在生产过程中仔细控制这些微观结构,并在部件完成后对其进行非破坏性表征,尽管超声波技术是唯一实用的。作为获取内部材料特性的手段,它的工业用途非常有限,因为根据这种微观结构准确解释超声波信号仍然是一个未解决的问题,依赖于精心准备后的牺牲样品的破坏性测试的替代技术被认为是不够的。已证明例如,该项目将通过提出一种解释由于微观结构纹理和不均匀性而导致的超声波散射的新方法来克服这些缺点,从而可能彻底改变整个生产和服务过程中非破坏性、非接触式超声波表征的使用,这种能力将支持新的先进制造工艺的发展,其对复杂几何形状的质量控制和保证的重要需求目前仅得到部分满足。伦敦帝国理工学院将提供国际研究交流和博士后科学家培训的机会,以及通过英国无损评估研究中心促进的行业推广途径。这项研究旨在为超声扩散波场的发展做出基础性贡献该方法能够对工程金属的关键微观结构进行体积表征,该方法将通过设计和校准实验传导机制和信号处理技术来实现这一目标,以从不同样品几何形状的漫射波场中提取完整的格林张量以及相关属性。此外,将结合辐射传输理论导出通用多重散射理论,以解释纹理和微观结构对相干波的影响并描述非相干波扩散。这种波扩散的计算模型将根据实验结果进行验证,并用于构建扩散波场和材料微观结构之间定量联系的知识数据库,最后,将开发一种稳健的反演方法来推导关键的微观结构。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Kube其他文献

Christopher Kube的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.22万
  • 项目类别:
    Research Grant
CMMI-EPSRC: Damage Tolerant 3D micro-architectured brittle materials
CMMI-EPSRC:耐损伤 3D 微结构脆性材料
  • 批准号:
    EP/Y032489/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.22万
  • 项目类别:
    Research Grant
ECCS-EPSRC Micromechanical Elements for Photonic Reconfigurable Zero-Static-Power Modules
用于光子可重构零静态功率模块的 ECCS-EPSRC 微机械元件
  • 批准号:
    EP/X025381/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.22万
  • 项目类别:
    Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole-based spin qubits on silicon (GeQuantumBus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线 (GeQuantumBus)
  • 批准号:
    EP/X039889/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.22万
  • 项目类别:
    Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon (Quantum Bus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线(量子总线)
  • 批准号:
    EP/X040380/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.22万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了