RAPID: Data-driven Understanding of Imperfect Protection for Long-term COVID-19 Projections

RAPID:数据驱动的对长期 COVID-19 预测不完美保护的理解

基本信息

  • 批准号:
    2223933
  • 负责人:
  • 金额:
    $ 19.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-15 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

This project will use data on COVID-19 reinfections and vaccine breakthroughs to build a model of how imperfect immunity affects SARS-CoV-2 pathogen transmission dynamics and subsequent effects on numbers of cases, deaths, and hospitalizations. A key factor dictating the long-term dynamics of COVID-19 is how population immunity against COVID-19 changes over time and exposure. Data on vaccination breakthroughs and reinfections in various states of the US and countries around the world create a unique opportunity to study immunity waning dynamics at the population level. The project will help understand the long-term risks of resurgence and severity of COVID-19, contribute to the US COVID-19 Scenario Modeling Hub, the US COVID-19 Forecast Hub, and the European COVID-19 Forecast and Scenario Modeling Hubs, and thus inform policymakers worldwide. The PI will integrate the lessons learned in an undergraduate on programming and a graduate-level class on Machine Learning for health. The project will also provide research and training opportunities through a senior capstone program and a minority-serving program. The model will represent a class of imperfect protection in the presence of multiple variants. Popular models such as all or nothing, leaky, and time-dependent waning will be considered along with interpretable machine learning models. The models will be validated by their “generalizability” on held-out data. The unified model of immunity will be developed in a way that it can be integrated with various epidemiological models. As a demonstration, it will be integrated with a model that tracks various states an individual can be in, including all permutations of infections, reinfections, one-dose, two-doses, and boosters. Having these states over time, age groups, and variants, for a given model of imperfect protection allows for precise computation of immunity in the population at a given time. The overall approach will also be evaluated by the accuracy of US state-level cases, deaths, and hospitalization forecasts it produces. This project was funded in collaboration with the CDC to support rapid-response research projects to further advance federal infectious disease modeling capabilities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将使用有关COVID-19恢复和疫苗突破的数据来建立N传播动态,并随后对Casses,死亡和住院数量的影响。 -19随着时间的流逝和暴露于美国的各个州和世界各国的风险-19 US Covid-19预测枢纽,欧洲COVID-19的预测和场景建模中心,因此在全球范围内为决策者提供了信息项目还将通过高级帽子计划提供研究和培训机会模型将通过固定数据的“统一模型”来验证。在内,在给定时间,包括不完美的保护措施的所有感染,一剂量,两剂量和助推器。该项目与CDC合作提供了资金,以支持快速响应研究项目,以进一步促进联邦感染性疾病疾病建模能力。该奖项反映了NSF的飞行任务,并通过评估美国知识分子和更广泛的影响评论值得支持。标准。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detection of Delays and Feedthroughs in Dynamic Networked Systems
动态网络系统中的延迟和馈通检测
  • DOI:
    10.1109/lcsys.2022.3233123
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Jahandari, Sina;Srivastava, Ajitesh
  • 通讯作者:
    Srivastava, Ajitesh
Shape-based Evaluation of Epidemic Forecasts
基于形状的疫情预测评估
Adjusting for Unmeasured Confounding Variables in Dynamic Networks
调整动态网络中未测量的混杂变量
  • DOI:
    10.1109/lcsys.2022.3233701
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Jahandari, Sina;Srivastava, Ajitesh
  • 通讯作者:
    Srivastava, Ajitesh
The variations of SIkJalpha model for COVID-19 forecasting and scenario projections
用于 COVID-19 预测和情景预测的 SIkJalpha 模型的变化
  • DOI:
    10.1016/j.epidem.2023.100729
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Srivastava, Ajitesh
  • 通讯作者:
    Srivastava, Ajitesh
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ajitesh Srivastava其他文献

Computational models of technology adoption at the workplace
工作场所技术采用的计算模型
  • DOI:
    10.1007/s13278-014-0199-z
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    C. Chelmis;Ajitesh Srivastava;V. Prasanna
  • 通讯作者:
    V. Prasanna
DTW+S: Shape-based Comparison of Time-series with Ordered Local Trend
DTW S:基于形状的时间序列与有序局部趋势的比较
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ajitesh Srivastava
  • 通讯作者:
    Ajitesh Srivastava
Learning to Forecast and Forecasting to Learn from the COVID-19 Pandemic
学习预测并通过预测从 COVID-19 大流行中吸取教训
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ajitesh Srivastava;V. Prasanna
  • 通讯作者:
    V. Prasanna
Towards High Performance, Portability, and Productivity: Lightweight Augmented Neural Networks for Performance Prediction
迈向高性能、便携性和生产力:用于性能预测的轻量级增强神经网络
Rapid Data Integration and Analysis for Upstream Oil and Gas Applications
上游石油和天然气应用的快速数据集成和分析
  • DOI:
    10.2118/174907-ms
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Cheung;Palash Goyal;G. Harris;O. Patri;Ajitesh Srivastava;Yinuo Zhang;A. Panangadan;C. Chelmis;Randall G. Mckee;Monique Theron;Tamás Németh;V. Prasanna
  • 通讯作者:
    V. Prasanna

Ajitesh Srivastava的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ajitesh Srivastava', 18)}}的其他基金

RAPID: Retrospective COVID-19 Scenario Projections Accounting for Population Heterogeneities
RAPID:考虑人口异质性的回顾性 COVID-19 情景预测
  • 批准号:
    2333494
  • 财政年份:
    2023
  • 资助金额:
    $ 19.92万
  • 项目类别:
    Standard Grant
RAPID: Fast COVID-19 Scenario Projections in Presence of Vaccines and Competing Variants
RAPID:在存在疫苗和竞争变​​种的情况下快速进行 COVID-19 情景预测
  • 批准号:
    2135784
  • 财政年份:
    2021
  • 资助金额:
    $ 19.92万
  • 项目类别:
    Standard Grant

相似国自然基金

基于数据与知识驱动的湍流深度特征提取与本构关系建模
  • 批准号:
    12372288
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
物理-数据混合驱动的复杂曲面多模态视觉检测理论与方法
  • 批准号:
    52375516
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于定制PINN的耦合非线性薛定谔系统中数据驱动怪波研究
  • 批准号:
    62305199
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
代理模型融合与迁移的分布式数据驱动进化计算方法
  • 批准号:
    62376097
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
番茄时序图像表型数据驱动的生长动态监测与诊断模型构建
  • 批准号:
    32301692
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RII Track-4: NSF: Obtaining Data Science Expertise to Enable Rapid Data Driven Material Discovery
RII Track-4:NSF:获得数据科学专业知识以实现快速数据驱动的材料发现
  • 批准号:
    2229686
  • 财政年份:
    2023
  • 资助金额:
    $ 19.92万
  • 项目类别:
    Standard Grant
Water Emergency Team (WET): Community-Driven Rapid Response Team to Evaluate Antibiotic-Resistant Bacteria Exposures and Household Environmental Health Risks from Sewer Overflows and Basement Flooding
水应急小组 (WET):社区驱动的快速响应小组,评估下水道溢出和地下室洪水导致的抗生素耐药细菌暴露和家庭环境健康风险
  • 批准号:
    10686675
  • 财政年份:
    2023
  • 资助金额:
    $ 19.92万
  • 项目类别:
RAPID: DRL AI: Data Driven Approaches to Integrating AI in K-12 Education Using Social Media Analysis
RAPID:DRL AI:利用社交媒体分析将 AI 集成到 K-12 教育中的数据驱动方法
  • 批准号:
    2332306
  • 财政年份:
    2023
  • 资助金额:
    $ 19.92万
  • 项目类别:
    Standard Grant
Investigating and targeting metabolic vulnerabilities of MYC-driven small cell lung cancer
研究和靶向 MYC 驱动的小细胞肺癌的代谢脆弱性
  • 批准号:
    10748278
  • 财政年份:
    2022
  • 资助金额:
    $ 19.92万
  • 项目类别:
Oncology Knowledge Rapid Alerts: Integrating biomarker-driven clinical decision support for therapy selection at point-of-care
肿瘤学知识快速警报:整合生物标志物驱动的临床决策支持,以在护理点选择治疗方法
  • 批准号:
    10526824
  • 财政年份:
    2022
  • 资助金额:
    $ 19.92万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了