Methods for Nonlinear, Non-Gaussian, and Data-Driven Ensemble Data Assimilation in Large-Scale Applications

大规模应用中非线性、非高斯和数据驱动的集合数据同化方法

基本信息

  • 批准号:
    2152814
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

A wide range of disciplines, from weather to epidemiology to reservoir management, depend on data assimilation, that is, a set of methods that combine incomplete and imperfect observations with a forecasting model to estimate and predict the state of a complex, evolving system. For large-scale systems such as those in weather forecasting, computational efficiency is essential, so the methods used often rely on a Gaussian approximation - assuming that properties are distributed according to a bell curve - because this approximation unlocks highly efficient algorithms. However, in practice many quantities of interest, from sea ice thickness to rain rates, are not described by a bell curve, and predictions can be inaccurate. This project aims to develop new algorithms that are not based on a bell curve approximation but that can still be used in large-scale applications where computational efficiency is crucial. This inherently interdisciplinary project will provide a multitude of opportunities for training and professional development of the next generation of statisticians and data scientists, with a particular focus on enhancing diversity and inclusion.The new insight on which the research project is built is a novel representation of the Bayesian posterior distribution through the introduction of a new synthetic random variable. The Bayesian posterior can be represented as the expected value of the probability density of the state variable conditioned on the new variable, where the expectation is taken with respect to the posterior on the new variable. This insight enables the use of a two-step approach to sampling from the posterior. The first step is standard Bayesian sampling but with a lower dimensionality, while the second step is based on regression. The project will combine methods from low-dimensional Bayesian computation for the first step with generalized linear regression and/or machine-learning regression for the second step. A skeleton of the two-step approach is already implemented in the Data Assimilation Research Testbed (DART) software suite, and DART enables data assimilation with over 25 geoscientifically-relevant models including the National Water Model and the Community Earth System Model. The research findings will be implemented in a form of new advanced two-step non-Gaussian algorithms in DART, making them available to a wide range of users.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从天气到流行病学再到水库管理,许多学科都依赖于数据同化,即一组将不完整和不完善的观测与预测模型结合起来的方法,以估计和预测复杂的、不断发展的系统的状态。对于天气预报等大型系统,计算效率至关重要,因此所使用的方法通常依赖于高斯近似(假设属性根据钟形曲线分布),因为这种近似可以实现高效算法。然而,在实践中,从海冰厚度到降雨率等许多重要的量都不是用钟形曲线描述的,并且预测可能不准确。该项目旨在开发不基于钟形曲线近似但仍可用于计算效率至关重要的大规模应用的新算法。这个本质上是跨学科的项目将为下一代统计学家和数据科学家的培训和专业发展提供大量机会,特别注重增强多样性和包容性。该研究项目所依据的新见解是通过引入新的合成随机变量来得到贝叶斯后验分布。贝叶斯后验可以表示为以新变量为条件的状态变量的概率密度的期望值,其中期望是相对于新变量的后验而取的。这种见解使得能够使用两步方法从后验中采样。第一步是标准贝叶斯采样,但维度较低,而第二步基于回归。该项目将结合第一步的低维贝叶斯计算方法和第二步的广义线性回归和/或机器学习回归。两步法的框架已在数据同化研究测试台 (DART) 软件套件中实施,DART 能够使用超过 25 个地球科学相关模型(包括国家水模型和社区地球系统模型)进行数据同化。研究成果将以新型先进的两步非高斯算法的形式在 DART 中实现,从而可供广大用户使用。该奖项反映了 NSF 的法定使命,并通过使用基金会的评估进行评估,认为值得支持。智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Two Methods for Data Assimilation of Wind Direction
风向资料同化的两种方法
Analog ensemble data assimilation in a quasigeostrophic coupled model
准地转耦合模型中的模拟系综数据同化
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ian Grooms其他文献

Ensemble Filtering and Low-Resolution Model Error: Covariance Inflation, Stochastic Parameterization, and Model Numerics
集成滤波和低分辨率模型误差:协方差膨胀、随机参数化和模型数值
  • DOI:
    10.1175/mwr-d-15-0032.1
  • 发表时间:
    2015-10-05
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Ian Grooms;Yoonsang Lee;A. Majda
  • 通讯作者:
    A. Majda
“Machine Learning for Data Assimilation”
“数据同化的机器学习”
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nora Schenk Dwd;Marc Bocquet;Manuel Pulido;Lars Nerger;Germany Awi;Quentin Malartic;A. Farchi;Lucia Minah Yang;Ian Grooms;Zofia Stanley;Maria Aufschlager;C. Irrgang;J. Saynisch‐Wagner
  • 通讯作者:
    J. Saynisch‐Wagner
Backscatter in energetically-constrained Leith parameterizations
能量约束 Leith 参数化中的反向散射
  • DOI:
    10.1016/j.ocemod.2023.102265
  • 发表时间:
    2023-09-01
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Ian Grooms
  • 通讯作者:
    Ian Grooms
Parameterized Ekman boundary layers on the tilted $f$-plane
倾斜 $f$ 平面上的参数化 Ekman 边界层
  • DOI:
    10.1063/5.0135932
  • 发表时间:
    2024-01-26
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Sara Tro;Ian Grooms;Keith A. Julien
  • 通讯作者:
    Keith A. Julien
Cross-attractor transforms: Improving forecasts by learning optimal maps between dynamical systems and imperfect models
交叉吸引子变换:通过学习动力系统和不完美模型之间的最佳映射来改进预测

Ian Grooms的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ian Grooms', 18)}}的其他基金

Collaborative Research: Ocean Transport and Eddy Energy
合作研究:海洋运输和涡流能
  • 批准号:
    1912332
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Improving Particle Filter Performance in Spatially-Extended Problems Using Generalized Random Field Likelihoods
使用广义随机场似然提高空间扩展问题中的粒子滤波器性能
  • 批准号:
    1821074
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
A Stochastic Approach to Representing Unresolved Mesoscales in Ocean Circulation Models
表示海洋环流模型中未解决的中尺度的随机方法
  • 批准号:
    1736708
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

非均匀风场下考虑侧向运动的大跨桥梁非线性颤振分析方法与风洞试验研究
  • 批准号:
    52308480
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
二维非线性薛定谔型方程自适应非结构网格局部间断Petrov-Galerkin方法研究
  • 批准号:
    12361076
  • 批准年份:
    2023
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
面向波浪能Wells涡轮的瞬态流动非线性降维-预测方法与非模态失速机理研究
  • 批准号:
    52376022
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
非稳态无源非线性特征的韧性评估与调控方法研究
  • 批准号:
    62271240
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
非正交定域分子轨道基的自洽QM/EC方法研究静电极化效应对非线性光学性质的影响
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Construction of neural feedback and brain stimulation methods by nonlinear control for neural dynamics of ADHD
ADHD神经动力学非线性控制的神经反馈和脑刺激方法的构建
  • 批准号:
    22K12194
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear performance analysis and prediction for robust low dose lung CT
鲁棒低剂量肺部 CT 的非线性性能分析和预测
  • 批准号:
    10684375
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
CRCNS: Understanding Single-Neuron Computation Using Nonlinear Model Optimization
CRCNS:使用非线性模型优化理解单神经元计算
  • 批准号:
    10668533
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
Nonlinear performance analysis and prediction for robust low dose lung CT
鲁棒低剂量肺部 CT 的非线性性能分析和预测
  • 批准号:
    10570160
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
Sex/Gender influences on periodontal disease and diabetes: A population science approach, with software
性别/性别对牙周病和糖尿病的影响:人口科学方法与软件
  • 批准号:
    10531704
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了