FW-HTF-R/Collaborative Research: FAIR4WISE: Future AI and Robotics for Women in Smart Engineering

FW-HTF-R/合作研究:FAIR4WISE:智能工程领域女性的未来人工智能和机器人技术

基本信息

  • 批准号:
    2222810
  • 负责人:
  • 金额:
    $ 68.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

This Future of Work at the Human-Technology Frontier Research (FW-HTF-R) grant will develop a new robot teleoperation method based on deep learning and blockchain certification to augment construction workers’ capability and promote diversity, equity, and inclusiveness in the workplace. By some estimates, a large fraction of construction jobs will be automated and teleoperated with robots in the future. This transition can enable safe and remote work away from hazardous construction sites with the potential to reduce obstacles for women to join the industry while also creating an inclusive work environment. At the same time, it is also important to improve the gender diversity of the construction industry, where women and other minority workers represent less than 10% of the workforce. In light of this, the project will investigate gender differences in collaborating and teleoperating robots, and capitalize on the understandings to develop robot learning and teleoperation methods that are accessible and equitable across genders. A novel blockchain-based mechanism will also be created to assess workers’ competence and performance to improve fairness and equity in future construction jobs. This research will also measure the impacts of developed technologies on future construction work, characterizing the intended potential and unintended consequences on workers and organizations. If successful, the developed technology ecosystem will help improve worker productivity, safety, and health, and equip the U.S. workers to lead the way in the construction industry reform in a gender-inclusive manner. This project can break down many barriers facing women and other underrepresented workers, opening new and equal work opportunities, helping them participate in the workforce, and navigating them in the transitions to the era of robots and artificial intelligence. This will benefit the construction industry and other domains with less diversity such as manufacturing and agriculture and result in U.S. economic growth.This project brings together an interdisciplinary team with deep and cross-cutting expertise in engineering, computer and information science, human factors, industrial and organizational psychology, education and adult training, and legal affairs to achieve multiple convergent objectives. First, this project will 1) develop an inclusive robot teleoperation interface adaptive to construction workers considering gender-related diversity and experience to augment workers’ performance; 2) design a federated learning mechanism for aggregating limited data from underrepresented workers to mitigate bias in AI and robot intelligence development; and 3) develop a blockchain-based platform in certifying workers’ skill competence and performance for trusted and equitable recruitment, hiring, and retaining. Second, with deep industry engagement, this research will develop a theoretical framework and multidimensional impact models to 1) quantitatively measure to what extent inclusive teleoperation can support gender diversity and augment workers’ capability via job and task analysis; 2) understand the impacts on construction work structure, job design, and worker self-efficacy and career development with broader participation of underrepresented workers; and 3) assess the opportunities and barriers at the organizational level for adaptations from integrated technological, economic, social, and legal aspects. Third, this project will develop a new platform integrating adult learning theories, innovative engineering curricula, and the developed artificial intelligence and robot technologies to break the boundaries for inclusive student learning, workforce training, and industry networking.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人类技术前沿研究的未来工作 (FW-HTF-R) 拨款将开发一种基于深度学习和区块链认证的新型机器人远程操作方法,以增强建筑工人的能力并促进工作场所的多样性、公平性和包容性据估计,未来很大一部分建筑工作将通过机器人实现自动化和远程操作,这种转变可以使安全和远程工作远离危险的建筑工地,有可能减少女性加入该行业的障碍,同时也创造了一个新的环境。包容性的工作环境。同时,改善建筑行业的性别多样性也很重要,女性和其他少数族裔工人占劳动力的比例不到10%。有鉴于此,该项目将调查协作和远程操作机器人中的性别差异。利用这些理解来开发跨性别均可使用且公平的机器人学习和远程操作方法,该研究还将创建一种基于区块链的新颖机制来评估工人的能力和绩效,以提高未来建筑工作的公平性和公平性。衡量发达技术的影响未来的建筑工作,描述对工人和组织的预期潜力和意外后果。如果成功,发达的技术生态系统将有助于提高工人的生产力、安全和健康,并使美国工人在建筑业改革中发挥引领作用。该项目可以打破女性和其他代表性不足的工人面临的许多障碍,开辟新的平等工作机会,帮助她们参与劳动力市场,并引导她们向机器人和人工智能时代过渡。有利于建设该项目汇集了一个跨学科团队,在工程、计算机和信息科学、人为因素、工业和组织心理学、教育等领域拥有深厚的跨领域专业知识首先,该项目将 1) 开发一个适应建筑工人的包容性机器人远程操作界面,考虑到性别相关的多样性和经验,以提高工人的绩效;2) 设计联合学习机制。用于聚合来自代表性不足的工人的数据有限,以减少人工智能和机器人智能开发中的偏见;3)开发一个基于区块链的平台,以认证工人的技能能力和绩效,以实现可信和公平的招聘、雇用和保留。这项研究将开发一个理论框架和多维影响模型,以 1) 通过工作和任务分析定量衡量包容性远程操作可以在多大程度上支持性别多样性并增强工人的能力;2) 了解对建筑工作结构、工作设计和工作的影响;工人代表性不足的工人更广泛地参与自我效能和职业发展;3)从综合技术、经济、社会和法律方面评估组织层面的适应机会和障碍第三,该项目将开发一个整合成人的新平台。学习理论、创新工程课程以及开发的人工智能和机器人技术,打破了包容性学生学习、劳动力培训和行业网络的界限。该奖项是 NSF 的法定使命,并通过使用基金会的智力优势进行评估,被认为值得支持和广度影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Underground infrastructure detection and localization using deep learning enabled radargram inversion and vision based mapping
  • DOI:
    10.1016/j.autcon.2023.105004
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    10.3
  • 作者:
    Mengjun Wang;Da Hu;Junjie Chen;Shuai Li
  • 通讯作者:
    Mengjun Wang;Da Hu;Junjie Chen;Shuai Li
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shuai Li其他文献

Online Clustering of Bandits with Misspecified User Models
错误指定用户模型的强盗在线聚类
  • DOI:
    10.48550/arxiv.2310.02717
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhiyong Wang;Jize Xie;Xutong Liu;Shuai Li;J. C. Lui
  • 通讯作者:
    J. C. Lui
Effects of linguistic proficiency on speech act development in L2 Chinese during study abroad
留学期间语言能力对汉语二语言语行为发展的影响
Highly Efficient Framework for Predicting Interactions Between Proteins
预测蛋白质之间相互作用的高效框架
  • DOI:
    10.1109/tcyb.2016.2524994
  • 发表时间:
    2017-03
  • 期刊:
  • 影响因子:
    11.8
  • 作者:
    Zhu-Hong You;Mengchu Zhou;Xin Luo;Shuai Li
  • 通讯作者:
    Shuai Li
Novel mammogram-based measures improve breast cancer risk prediction beyond an established measure of mammographic density
基于乳房X光检查的新型测量方法改善了乳腺癌风险预测,超越了现有的乳房X光密度测量方法
  • DOI:
    10.1101/2020.05.24.20111815
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Nguyen;D. Schmidt;E. Makalic;G. Maskarinec;Shuai Li;G. Dite;Y. K. Aung;Christopher F. Evans;Ho N. Trinh;L. Baglietto;J. Stone;Yun;J. Sung;R. MacInnis;P. Dugué;J. Dowty;M. Jenkins;R. Milne;M. Southey;G. Giles;J. Hopper
  • 通讯作者:
    J. Hopper
Implementation of long-term assessment of human health risk for metal contaminated groundwater: A coupled chemical mass balance and hydrodynamics model
实施金属污染地下水人类健康风险的长期评估:耦合化学质量平衡和流体动力学模型
  • DOI:
    10.1016/j.ecoenv.2019.04.053
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Yimei Zhang;Shuai Li;Qinglu Fang;Yaxiao Duan;Ping Ou;Liqun Wang;Zhuang Chen;Fei Wang
  • 通讯作者:
    Fei Wang

Shuai Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shuai Li', 18)}}的其他基金

I-Corps: Artificial Intelligence (AI)-Enabled and Digital Twin Interactive Robots for Facility Hygiene and Human Health
I-Corps:支持人工智能 (AI) 的数字孪生交互式机器人,用于设施卫生和人类健康
  • 批准号:
    2227108
  • 财政年份:
    2022
  • 资助金额:
    $ 68.86万
  • 项目类别:
    Standard Grant
FW-HTF-R/Collaborative Research: Human-Robot Sensory Transfer for Worker Productivity, Training, and Quality of Life in Remote Undersea Inspection and Construction Tasks
FW-HTF-R/合作研究:人机感官传递可提高远程海底检查和施工任务中工人的生产力、培训和生活质量
  • 批准号:
    2129003
  • 财政年份:
    2021
  • 资助金额:
    $ 68.86万
  • 项目类别:
    Standard Grant
CPS: Medium: Bio-socially Adaptive Control of Robotics-Augmented Building-Human Systems for Infection Prevention by Cybernation of Pathogen Transmission
CPS:中:机器人增强建筑人类系统的生物社会自适应控制,通过病原体传播的网络来预防感染
  • 批准号:
    2038967
  • 财政年份:
    2021
  • 资助金额:
    $ 68.86万
  • 项目类别:
    Standard Grant
SCC-PG: Toward Disease-Resistant School Communities by Reinventing the Interfaces among Built Environments, Occupants, and Microbiomes
SCC-PG:通过重塑建筑环境、居住者和微生物组之间的界面,打造抗病学校社区
  • 批准号:
    1952140
  • 财政年份:
    2020
  • 资助金额:
    $ 68.86万
  • 项目类别:
    Standard Grant
RAPID: Impacts of Design and Operation Attributes of Mass-Gathering Civil Infrastructure Systems on Pathogen Transmission and Exposure
RAPID:大规模聚集民用基础设施系统的设计和运行属性对病原体传播和暴露的影响
  • 批准号:
    2026719
  • 财政年份:
    2020
  • 资助金额:
    $ 68.86万
  • 项目类别:
    Standard Grant
CRII: CPS: Modeling Subsurface Features and Connected Autonomous Vehicles as Cyber-Physical Systems for Reciprocal Mapping and Localization
CRII:CPS:将地下特征和联网自动驾驶车辆建模为用于相互映射和定位的网络物理系统
  • 批准号:
    1850008
  • 财政年份:
    2019
  • 资助金额:
    $ 68.86万
  • 项目类别:
    Standard Grant

相似国自然基金

有机工质-导热油ORC直接接触式蒸汽发生器湍流破碎与强化换热协同耦合机制研究
  • 批准号:
    51706195
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
纳米流体在太阳能中温集热过程的辐射吸收特性与传热机理研究
  • 批准号:
    51206027
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于共晶盐与导热油直接接触换热的高效储热机理
  • 批准号:
    51106185
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
转HTFα对脊髓继发性损伤和微循环重建的影响
  • 批准号:
    39970755
  • 批准年份:
    1999
  • 资助金额:
    13.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
  • 批准号:
    2326170
  • 财政年份:
    2023
  • 资助金额:
    $ 68.86万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: Human-in-the-Lead Construction Robotics: Future-Proofing Framing Craft Workers in Industrialized Construction
合作研究:FW-HTF-RM:人类主导的建筑机器人:工业化建筑中面向未来的框架工艺工人
  • 批准号:
    2326160
  • 财政年份:
    2023
  • 资助金额:
    $ 68.86万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RL: Trapeze: Responsible AI-assisted Talent Acquisition for HR Specialists
合作研究:FW-HTF-RL:Trapeze:负责任的人工智能辅助人力资源专家人才获取
  • 批准号:
    2326193
  • 财政年份:
    2023
  • 资助金额:
    $ 68.86万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: Artificial Intelligence Technology for Future Music Performers
合作研究:FW-HTF-RM:未来音乐表演者的人工智能技术
  • 批准号:
    2326198
  • 财政年份:
    2023
  • 资助金额:
    $ 68.86万
  • 项目类别:
    Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
  • 批准号:
    2326407
  • 财政年份:
    2023
  • 资助金额:
    $ 68.86万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了