CCI Phase I: NSF Center for Advanced Molecular Architectures for Quantum Information Science
CCI 第一阶段:NSF 量子信息科学先进分子架构中心
基本信息
- 批准号:2221453
- 负责人:
- 金额:$ 180万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The NSF Center for Advanced Molecular Architectures for Quantum Information Science is supported by the Centers for Chemical Innovation (CCI) Program in the Division of Chemistry. Professor Anastassia Alexandrova in the Department of Chemistry and Biochemistry at the University of California-Los Angeles (UCLA) will lead a research team composed of Assistant Professor Justin Caram (Chemistry and Biochemistry, UCLA), Distinguished Professor Miguel Garcia-Garibay (Chemistry and Biochemistry, UCLA), Professor Eric Hudson (Physics and Astronomy, UCLA), and Professor Anna Krylov (Chemistry, University of Southern California) to develop new molecular and surface platforms that contain molecular appendages that can act as quantum bits (qubits). These “quantum functional groups” have particular magnetic spin and electric charge, which can be excited with lasers and prepared into “superpositions” of quantum states—the fundamental building block of a quantum computer. However, unlike current quantum computing platforms, which are built from the top down and are limited to less than 100 qubits, quantum functional groups on molecules can be made and scaled to trillions of identical addressable qubits, potentially providing a novel architecture for enormous quantum computers. Computational programs based on qubits are expected to solve problems at much higher speeds than classical computers and simulate complicated systems that are beyond the capabilities of any current computer. Such quantum approaches may also revolutionize ultra-secure communications (quantum Internet) and ultra-precise chemical and physical measurements (quantum sensing). Using the rules of chemistry and the tools of molecular design and synthesis, coupled with advanced spectroscopy and computation, the Center will make use of unrealized molecular complexity to develop quantum information systems that enable substantially more flexible, scalable, and achievable quantum systems. As a result, the Center will tailor the systems to meet a variety of quantum information science (QIS) needs in sensing and computing, while simultaneously opening a new branch of chemistry, namely, the chemistry of QIS. The center will also engage researchers at the intersection of multiple traditional disciplines, where the future of QIS resides. The Center’s team will advance education via workshops, innovative courses and modules, and a teachers education program. Students will be recruited at all levels and from diverse backgrounds using innovative strategies, and the contributions of women and underrepresented groups will be promoted through Center activities, while growing the QIS community centered in chemistry. Achieving quantum enhancement in sensing, communication, and computing requires the high-fidelity preparation, maintenance, and readout of defined quantum states, which then would be resistant to decoherence and amenable to entanglement. So far, the most successful systems that exhibit such clean quantum states are those of extreme simplicity: atoms, very small molecules in vacuo, and defects in solids. Because the electronic states in these systems are “closed”, i.e., strictly localized to an atom or a defect, they can be optically cycled without dissipation to the environment, and decoherence can be managed. However, what is gained in coherence, is lost in system complexity and thus flexibility, scalability and eventual practicability. This NSF Center will use the rules of chemistry to substantially expand the repertoire of systems, and therefore the capabilities, available for QIS. We will design molecules that carry qubit functionalities (or quantum functional groups), by using chemical complexity rather than avoiding it. Because molecules are identical and can be synthesized in molar quantities, they can be assembled into scalable, next-generation quantum information platforms - a combination of features not yet realized. Broader impacts will include education of researchers at the intersection of traditional disciplines: physical, synthetic, and theoretical chemistry, and physics. We will recruit students at all levels and from diverse backgrounds, using innovative recruiting strategies, such as through research days for visiting undergraduate students, and young researchers at the moment of transfer from Community Colleges. Promoting women and underrepresented groups will be central to all Center activities. The Center will make a significant effort toward building the QIS community housed in the field of chemistry, through organizing symposia, bootcamps, workshops, cross-departmental courses, innovative modules for undergraduate classes, and regular communication of all researchers of the center, from all involved backgrounds. The Center will develop a teacher education program, through which they will be provided visualization tools that will amplify their ability to reach large numbers of high school students. Outreach to the public will be done by growing and diversifying established, successful platforms, such as the Explore Your Universe event by the Division of Physical Sciences of UCLA.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF高级分子体系结构的量子信息科学中心得到了化学创新中心(CCI)的支持。 Professor Anastassia Alexandrova in the Department of Chemistry and Biochemistry at the University of California-Los Angeles (UCLA) will lead a research team composed of Assistant Professor Justin Caram (Chemistry and Biochemistry, UCLA), Distinguished Professor Miguel Garcia-Garibay (Chemistry and Biochemistry, UCLA), Professor Eric Hudson (Physics and Astronomy, UCLA),安娜·克里洛夫(Anna Krylov)教授(南加州大学化学)开发了包含可以充当量子位(量子位)的分子附属的新分子和表面平台。这些“量子官能团”具有特殊的磁性自旋和电荷,可以用激光器激发并准备成量子状态的“叠加”,即量子计算机的基本构建块。但是,与当前从自上而下构建并且仅限于100次数量的当前量子计算平台不同,可以制作分子上的量子官能团,并缩放到数万亿个相同的可寻址量,有可能为巨大的量子计算机提供新颖的结构。基于量子方法的计算程序有望以比古典计算机更高的速度解决问题,并模拟超出任何当前计算机功能的复杂系统。这种量子方法还可能彻底改变超安全通信(量子互联网)和超级精确的化学和物理测量(量子灵敏度)。使用化学规则以及分子设计和合成的工具,再加上高级光谱和计算,该中心将利用未实现的分子复杂性来开发量子信息系统,从而实现更加灵活,可扩展和成功的量子系统。结果,该中心将量身定制系统以满足敏感性和计算方面的各种量子信息科学(QIS)需求,同时开放了化学的新分支,即QIS的化学。该中心还将吸引研究人员参与QIS未来的多个传统学科的交集。该中心的团队将通过研讨会,创新课程和模块以及教师教育计划来推进教育。将使用创新策略在各个层面和不同背景中招募学生,妇女和代表性不足的群体的贡献将通过中心活动促进,同时发展以化学为中心的QIS社区。在感应,通信和计算中实现量子增强,需要对定义的量子状态进行高保真的准备,维护和读数,然后这将抵抗变质,并且可以纠缠。到目前为止,存在这种干净的量子状态的最成功的系统是极端简单的系统:原子,真空中的分子非常小,固体缺陷。由于这些系统中的电子状态是“封闭”的,即严格定位于原子或缺陷,因此可以在不耗散环境的情况下将它们光学地循环,并且可以管理腐烂。但是,连贯性获得的内容在系统复杂性中丢失,因此灵活性,可伸缩性和最终实践。该NSF中心将利用化学规则来大大扩展系统的曲目,因此可以扩大可用于QIS的功能。我们将通过使用化学复杂性而不是避免使用定量功能(或量子官能团)来设计具有定量功能(或量子官能团)的分子。由于分子是相同的,并且可以以摩尔数量合成,因此可以将它们组装成可扩展的下一代量子信息平台 - 尚未实现的特征组合。更广泛的影响将包括在传统学科的交叉点上对研究人员的教育:物理,合成和理论化学和物理学。我们将使用创新的招聘策略(例如,在社区学院转学时,都可以使用创新的招聘策略,例如,从研究日期和年轻的研究人员使用创新的招聘策略,将招募各个级别的学生和潜水员背景。促进妇女和代表性不足的团体将是所有中心活动的核心。该中心将通过组织座椅,训练营,讲习班,跨部门课程,针对本科课程的创新模块以及从所有相关背景中的所有研究人员进行定期沟通,从而在化学领域建立QIS社区的巨大努力。该中心将开发一项教师教育计划,通过该计划将通过该计划提供可视化工具,以扩大其吸引大量高中生的能力。向公众推广将通过扩大和多样化的既定平台,例如通过加州大学洛杉矶分校的物理科学部探索您的宇宙活动。该奖项反映了NSF的法定任务,并通过基金会的知识分子优点和更广泛的影响审查标准,通过评估来诚实地对其进行评估。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the prospects of optical cycling in diatomic cations: effects of transition metals, spin–orbit couplings, and multiple bonds
- DOI:10.1080/00268976.2022.2107582
- 发表时间:2022-08
- 期刊:
- 影响因子:1.7
- 作者:P. Wójcik;E. Hudson;A. Krylov
- 通讯作者:P. Wójcik;E. Hudson;A. Krylov
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anastassia Alexandrova其他文献
Client Satisfaction with Home Care Services in Rural Russia
俄罗斯农村地区家庭护理服务的客户满意度
- DOI:
10.1300/j031v18n01_05 - 发表时间:
2006 - 期刊:
- 影响因子:5.1
- 作者:
R. Struyk;Anastassia Alexandrova;Igor G. Belyakov;K. Chagin - 通讯作者:
K. Chagin
Anastassia Alexandrova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anastassia Alexandrova', 18)}}的其他基金
Quantifying and Designing for Electrostatic Preorganization in Enzymes
酶中静电预组织的量化和设计
- 批准号:
2203366 - 财政年份:2022
- 资助金额:
$ 180万 - 项目类别:
Continuing Grant
Quantifying and Designing for Electrostatic Preorganization in Enzymes
酶中静电预组织的量化和设计
- 批准号:
1903808 - 财政年份:2019
- 资助金额:
$ 180万 - 项目类别:
Standard Grant
CAREER: From advancing of theory of chemical bonding to advanced cluster-based materials
职业生涯:从化学键合理论的进步到先进的簇基材料
- 批准号:
1351968 - 财政年份:2014
- 资助金额:
$ 180万 - 项目类别:
Continuing Grant
相似国自然基金
高层钢结构建模-优化-深化的跨阶段智能设计方法
- 批准号:52308142
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
游戏化mHealth干预模式下精神障碍出院患者自杀风险管理策略的实施科学研究——基于多阶段优化策略
- 批准号:72374095
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
非洲爪蟾IV型干扰素IFN-upsilon在不同发育阶段的抗病毒功能研究
- 批准号:32303043
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
壳斗科植物传播前阶段种子捕食的地理格局及其驱动机制
- 批准号:32371612
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
计及海量多元逆变资源下垂参数动态优化的配电网多阶段协调运行研究
- 批准号:52307091
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CCI Phase I: NSF Center for Adapting Flaws into Features
CCI 第一阶段:NSF 缺陷调整中心
- 批准号:
2413590 - 财政年份:2024
- 资助金额:
$ 180万 - 项目类别:
Standard Grant
CCI Phase I: NSF Center for Sustainable Photoredox Catalysis (SuPRCat)
CCI 第一阶段:NSF 可持续光氧化还原催化中心 (SuPRCat)
- 批准号:
2318141 - 财政年份:2023
- 资助金额:
$ 180万 - 项目类别:
Standard Grant
CCI Phase I: NSF Center for Polymers for a Circular Economy (PCE)
CCI 第一阶段:NSF 循环经济聚合物中心 (PCE)
- 批准号:
2317582 - 财政年份:2023
- 资助金额:
$ 180万 - 项目类别:
Standard Grant
CCI Phase 1: NSF Center for MXenes Synthesis, Tunability and Reactivity (M-STAR)
CCI 第一阶段:NSF MXene 合成、可调性和反应性中心 (M-STAR)
- 批准号:
2318105 - 财政年份:2023
- 资助金额:
$ 180万 - 项目类别:
Standard Grant
CCI Phase I: NSF Center for Single-Entity Nanochemistry and Nanocrystal Design
CCI 第一阶段:NSF 单一实体纳米化学和纳米晶体设计中心
- 批准号:
2221062 - 财政年份:2022
- 资助金额:
$ 180万 - 项目类别:
Standard Grant