CCI Phase I: NSF Center for Advanced Molecular Architectures for Quantum Information Science

CCI 第一阶段:NSF 量子信息科学先进分子架构中心

基本信息

项目摘要

The NSF Center for Advanced Molecular Architectures for Quantum Information Science is supported by the Centers for Chemical Innovation (CCI) Program in the Division of Chemistry. Professor Anastassia Alexandrova in the Department of Chemistry and Biochemistry at the University of California-Los Angeles (UCLA) will lead a research team composed of Assistant Professor Justin Caram (Chemistry and Biochemistry, UCLA), Distinguished Professor Miguel Garcia-Garibay (Chemistry and Biochemistry, UCLA), Professor Eric Hudson (Physics and Astronomy, UCLA), and Professor Anna Krylov (Chemistry, University of Southern California) to develop new molecular and surface platforms that contain molecular appendages that can act as quantum bits (qubits). These “quantum functional groups” have particular magnetic spin and electric charge, which can be excited with lasers and prepared into “superpositions” of quantum states—the fundamental building block of a quantum computer. However, unlike current quantum computing platforms, which are built from the top down and are limited to less than 100 qubits, quantum functional groups on molecules can be made and scaled to trillions of identical addressable qubits, potentially providing a novel architecture for enormous quantum computers. Computational programs based on qubits are expected to solve problems at much higher speeds than classical computers and simulate complicated systems that are beyond the capabilities of any current computer. Such quantum approaches may also revolutionize ultra-secure communications (quantum Internet) and ultra-precise chemical and physical measurements (quantum sensing). Using the rules of chemistry and the tools of molecular design and synthesis, coupled with advanced spectroscopy and computation, the Center will make use of unrealized molecular complexity to develop quantum information systems that enable substantially more flexible, scalable, and achievable quantum systems. As a result, the Center will tailor the systems to meet a variety of quantum information science (QIS) needs in sensing and computing, while simultaneously opening a new branch of chemistry, namely, the chemistry of QIS. The center will also engage researchers at the intersection of multiple traditional disciplines, where the future of QIS resides. The Center’s team will advance education via workshops, innovative courses and modules, and a teachers education program. Students will be recruited at all levels and from diverse backgrounds using innovative strategies, and the contributions of women and underrepresented groups will be promoted through Center activities, while growing the QIS community centered in chemistry. Achieving quantum enhancement in sensing, communication, and computing requires the high-fidelity preparation, maintenance, and readout of defined quantum states, which then would be resistant to decoherence and amenable to entanglement. So far, the most successful systems that exhibit such clean quantum states are those of extreme simplicity: atoms, very small molecules in vacuo, and defects in solids. Because the electronic states in these systems are “closed”, i.e., strictly localized to an atom or a defect, they can be optically cycled without dissipation to the environment, and decoherence can be managed. However, what is gained in coherence, is lost in system complexity and thus flexibility, scalability and eventual practicability. This NSF Center will use the rules of chemistry to substantially expand the repertoire of systems, and therefore the capabilities, available for QIS. We will design molecules that carry qubit functionalities (or quantum functional groups), by using chemical complexity rather than avoiding it. Because molecules are identical and can be synthesized in molar quantities, they can be assembled into scalable, next-generation quantum information platforms - a combination of features not yet realized. Broader impacts will include education of researchers at the intersection of traditional disciplines: physical, synthetic, and theoretical chemistry, and physics. We will recruit students at all levels and from diverse backgrounds, using innovative recruiting strategies, such as through research days for visiting undergraduate students, and young researchers at the moment of transfer from Community Colleges. Promoting women and underrepresented groups will be central to all Center activities. The Center will make a significant effort toward building the QIS community housed in the field of chemistry, through organizing symposia, bootcamps, workshops, cross-departmental courses, innovative modules for undergraduate classes, and regular communication of all researchers of the center, from all involved backgrounds. The Center will develop a teacher education program, through which they will be provided visualization tools that will amplify their ability to reach large numbers of high school students. Outreach to the public will be done by growing and diversifying established, successful platforms, such as the Explore Your Universe event by the Division of Physical Sciences of UCLA.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF 量子信息科学先进分子结构中心得到了加州大学洛杉矶分校 (UCLA) 化学与生物化学系化学创新中心 (CCI) 项目的支持。将领导一个由助理教授Justin Caram(化学和生物化学,加州大学洛杉矶分校)、杰出教授Miguel Garcia-Garibay(化学和生物化学)组成的研究小组加州大学洛杉矶分校生物化学系)、Eric Hudson 教授(加州大学洛杉矶分校物理与天文学系)和 Anna Krylov 教授(南加州大学化学系)共同开发新的分子和表面平台,其中包含可以充当量子位(qubit)的分子附属物。 “量子官能团”具有特殊的磁自旋和电荷,可以用激光激发并制备成量子态的“叠加”——量子计算机的基本构建模块,但与当前的量子计算平台不同。从上到下构建并且仅限于不到 100 个量子位,分子上的量子功能组可以被制造并扩展到数万亿个相同的可寻址量子位,这可能为基于量子位的计算程序提供一种新颖的架构。这种量子方法也可能会彻底改变超安全通信(量子互联网)和超精确化学和物理测量(量子)。该中心将利用化学原理以及分子设计和合成工具,再加上先进的光谱学和计算,利用未实现的分子复杂性来开发量子信息系统,从而实现更加灵活、可扩展和可实现的量子系统。因此,该中心将定制系统以满足传感和计算方面的各种量子信息科学(QIS)需求,同时开设一个新的化学分支,即 QIS 化学。多种传统的交汇该中心的团队将通过讲习班、创新课程和模块以及教师教育计划,利用创新策略以及女性和女性的贡献来招募来自不同背景的各级学生。代表性不足的群体将通过中心活动得到促进,同时发展以化学为中心的 QIS 社区,实现传感、通信和计算领域的量子增强需要高保真地准备、维护和读出已定义的量子态,而这将阻碍量子态的发展。到目前为止,表现出这种干净量子态的最成功的系统是那些极其简单的系统:原子、真空中的非常小的分子和固体中的缺陷,因为这些系统中的电子态是“封闭的”,即,严格定位于原子或缺陷,它们可以进行光学循环而不耗散到环境中,并且可以管理退相干性,但是,在相干性中获得的东西会因系统复杂性而丢失。从而实现灵活性、可扩展性和最终的实用性。该 NSF 中心将利用化学规则来大幅扩展系统库,从而扩展 QIS 可用的功能。由于分子是相同的并且可以以摩尔量合成,因此它们可以组装成可扩展的下一代量子信息平台 - 尚未实现的功能组合将包括研究人员的教育。在传统学科的交叉点:物理、合成和理论化学以及物理学,我们将采用创新的招聘策略,例如通过为访问本科生和目前的年轻研究人员提供研究日来招收来自不同背景的各个级别的学生。促进妇女和代表性不足的群体的发展将是中心所有活动的核心,该中心将通过组织研讨会、训练营、讲习班和跨部门课程,大力建设化学领域的 QIS 社区。 , 创新的该中心将开发一个教师教育计划,通过该计划向他们提供可视化工具,以增强他们接触大量高中生的能力。将通过发展和多样化已建立的成功平台来向公众进行宣传,例如加州大学洛杉矶分校物理科学部的“探索你的宇宙”活动。该奖项反映了 NSF 的法定使命,并通过使用基金会的评估进行评估,被认为值得支持。智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the prospects of optical cycling in diatomic cations: effects of transition metals, spin–orbit couplings, and multiple bonds
  • DOI:
    10.1080/00268976.2022.2107582
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    P. Wójcik;E. Hudson;A. Krylov
  • 通讯作者:
    P. Wójcik;E. Hudson;A. Krylov
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anastassia Alexandrova其他文献

Client Satisfaction with Home Care Services in Rural Russia
俄罗斯农村地区家庭护理服务的客户满意度
  • DOI:
    10.1300/j031v18n01_05
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    R. Struyk;Anastassia Alexandrova;Igor G. Belyakov;K. Chagin
  • 通讯作者:
    K. Chagin

Anastassia Alexandrova的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anastassia Alexandrova', 18)}}的其他基金

Quantifying and Designing for Electrostatic Preorganization in Enzymes
酶中静电预组织的量化和设计
  • 批准号:
    2203366
  • 财政年份:
    2022
  • 资助金额:
    $ 180万
  • 项目类别:
    Continuing Grant
Quantifying and Designing for Electrostatic Preorganization in Enzymes
酶中静电预组织的量化和设计
  • 批准号:
    1903808
  • 财政年份:
    2019
  • 资助金额:
    $ 180万
  • 项目类别:
    Standard Grant
CAREER: From advancing of theory of chemical bonding to advanced cluster-based materials
职业生涯:从化学键合理论的进步到先进的簇基材料
  • 批准号:
    1351968
  • 财政年份:
    2014
  • 资助金额:
    $ 180万
  • 项目类别:
    Continuing Grant

相似国自然基金

热带河口特有鱼类尖鳍鲤早期生活史不同阶段的栖息地利用变化及驱动机制
  • 批准号:
    32360917
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
PPP项目跨阶段监管机制研究
  • 批准号:
    72301115
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
抗生素对不同生长阶段蓝藻光合电子传递和生理代谢的影响及分子机制研究
  • 批准号:
    52300219
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多活性纳米酶多靶点全阶段治疗特发性肺纤维化
  • 批准号:
    32371438
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于现代监测的湘西惹迷洞MIS2阶段石笋碳同位素和微量元素记录重建研究
  • 批准号:
    42371164
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

CCI Phase I: NSF Center for Adapting Flaws into Features
CCI 第一阶段:NSF 缺陷调整中心
  • 批准号:
    2413590
  • 财政年份:
    2024
  • 资助金额:
    $ 180万
  • 项目类别:
    Standard Grant
CCI Phase I: NSF Center for Sustainable Photoredox Catalysis (SuPRCat)
CCI 第一阶段:NSF 可持续光氧化还原催化中心 (SuPRCat)
  • 批准号:
    2318141
  • 财政年份:
    2023
  • 资助金额:
    $ 180万
  • 项目类别:
    Standard Grant
CCI Phase I: NSF Center for Polymers for a Circular Economy (PCE)
CCI 第一阶段:NSF 循环经济聚合物中心 (PCE)
  • 批准号:
    2317582
  • 财政年份:
    2023
  • 资助金额:
    $ 180万
  • 项目类别:
    Standard Grant
CCI Phase 1: NSF Center for MXenes Synthesis, Tunability and Reactivity (M-STAR)
CCI 第一阶段:NSF MXene 合成、可调性和反应性中心 (M-STAR)
  • 批准号:
    2318105
  • 财政年份:
    2023
  • 资助金额:
    $ 180万
  • 项目类别:
    Standard Grant
CCI Phase I: NSF Center for Single-Entity Nanochemistry and Nanocrystal Design
CCI 第一阶段:NSF 单一实体纳米化学和纳米晶体设计中心
  • 批准号:
    2221062
  • 财政年份:
    2022
  • 资助金额:
    $ 180万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了