REU: Modern Topics in Pure and Applied Mathematics

REU:纯粹数学和应用数学的现代主题

基本信息

  • 批准号:
    2149913
  • 负责人:
  • 金额:
    $ 48.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

This project supports a summer undergraduate research experience in mathematical sciences at the University of Maryland – College Park. The project will contribute to the development of a mathematically sophisticated workforce and broaden the participation of undergraduate students in research in the mathematical sciences. Twelve undergraduates will participate each summer in an eight week residential summer program, preceded by a two week remote training session. Each research team will involve a faculty mentor together with a graduate student assistant. This REU project has three primary goals. The first goal is to nurture research abilities, promote independent thinking, and enhance the technical and presentation skills of the undergraduate participants. The second goal is to provide training to undergraduates from schools with limited research opportunities in STEM fields. The final goal is to provide graduate students with hands-on experience in the supervision of REU projects and administration of REU programs. Student participants will engage in cutting-edge research in a variety of fields within contemporary pure and applied mathematics. The program will also contribute to students’ professional development by offering a diverse array of seminars and workshops, and will provide students with opportunities to present the results of their work at high-profile national conferences.Undergraduate participants in this research program will conduct research in pure and applied mathematical fields under the supervision of experienced faculty and graduate student mentors. Projects will range from mathematical modelling in materials science to machine learning methods for the study of rare events in random systems to applications of harmonic analysis in the representations of data via neural networks. Other projects will originate from mathematical fields such as optimal transport theory, geometric flows, convex and differential geometry, and cluster algebras. Student participants will also gain valuable professional experience through involvement in a series of workshops and seminars: the Update Seminar (where undergraduate participants will give talks on the progress of their research), the Exposure Seminar (where faculty from the host institution and nearby universities will give expository talks on their research), and the Lunchtime Workshop (where a variety of professional development topics will be addressed). Following the conclusion of the summer program, students will remain in contact with their faculty mentors for additional guidance on the preparation of final reports, research articles, and conference presentations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目支持马里兰大学帕克分校数学科学领域的暑期本科生研究经验,该项目将有助于培养一支具有丰富数学知识的队伍,并扩大本科生对数学科学研究的参与。每年夏天,为期八周的住宿暑期课程,每个研究团队都会有一名教师导师和一名研究生助理。该项目有三个主要目标:第一个目标是培养研究能力。 ,提倡独立思考,提升技术能力第二个目标是为 STEM 领域研究机会有限的学校的本科生提供培训,最终目标是为研究生提供 REU 项目监督和 REU 管理的实践经验。学生参与者将参与当代纯数学和应用数学各个领域的前沿研究,该项目还将通过提供各种研讨会和讲习班来促进学生的专业发展,并为学生提供机会。在备受瞩目的国家级会议上展示他们的工作成果该研究项目的本科生参与者将在经验丰富的数学教师和研究生导师的监督下进行纯粹和应用领域的研究,项目范围从材料科学的数学建模到研究随机系统中罕见事件的机器学习方法。其他项目将源自数学领域,例如最优传输理论、几何流、凸几何和微分几何,并且学生参与者还将通过参与获得宝贵的专业经验。一系列研讨会和研讨会:更新研讨会(本科生参与者将就他们的研究进展进行演讲)、曝光研讨会(来自主办机构和附近大学的教师将就他们的研究进行说明性演讲)和午餐研讨会(其中各种夏季课程结束后,学生将与导师保持联系,以获得有关准备最终报告、研究文章和会议演讲的更多指导。该奖项反映了 NSF 的法定使命和目标。已经通过使用基金会的智力优点和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal control for sampling the transition path process and estimating rates
对转移路径过程进行采样并估计速率的最优控制
  • DOI:
    10.1016/j.cnsns.2023.107701
  • 发表时间:
    2023-05-26
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiaxin Yuan;Amar Shah;Channing Bentz;M. Cameron
  • 通讯作者:
    M. Cameron
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maria Cameron其他文献

Matrix Factorization
矩阵分解

Maria Cameron的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maria Cameron', 18)}}的其他基金

CAREER: Computational tools for the analysis of large stochastic networks
职业:用于分析大型随机网络的计算工具
  • 批准号:
    1554907
  • 财政年份:
    2016
  • 资助金额:
    $ 48.05万
  • 项目类别:
    Continuing Grant
Computational methods for the study of rare events
研究罕见事件的计算方法
  • 批准号:
    1217118
  • 财政年份:
    2012
  • 资助金额:
    $ 48.05万
  • 项目类别:
    Standard Grant

相似国自然基金

基于传统桥梁营造智慧的现代木结构模块化集成建筑(T-MiC)设计体系
  • 批准号:
    52378023
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于现代监测的湘西惹迷洞MIS2阶段石笋碳同位素和微量元素记录重建研究
  • 批准号:
    42371164
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
亚洲中部干旱区过去千年、现代及未来的温湿配置格局及其与全球干旱区的对比研究
  • 批准号:
    42371158
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
现代通信工程中新型序列的设计与构造
  • 批准号:
    12301429
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
现代化都市圈空间构建中的“层级-流”耦合作用研究
  • 批准号:
    42371222
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Statistical and computational topics from modern finance and insurance
现代金融和保险的统计和计算主题
  • 批准号:
    RGPIN-2015-04059
  • 财政年份:
    2019
  • 资助金额:
    $ 48.05万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical and computational topics from modern finance and insurance
现代金融和保险的统计和计算主题
  • 批准号:
    RGPIN-2015-04059
  • 财政年份:
    2019
  • 资助金额:
    $ 48.05万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical and computational topics from modern finance and insurance
现代金融和保险的统计和计算主题
  • 批准号:
    RGPIN-2015-04059
  • 财政年份:
    2018
  • 资助金额:
    $ 48.05万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical and computational topics from modern finance and insurance
现代金融和保险的统计和计算主题
  • 批准号:
    RGPIN-2015-04059
  • 财政年份:
    2018
  • 资助金额:
    $ 48.05万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical and computational topics from modern finance and insurance
现代金融和保险的统计和计算主题
  • 批准号:
    RGPIN-2015-04059
  • 财政年份:
    2017
  • 资助金额:
    $ 48.05万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了