Collaborative Research: US-Ireland R&D Partnership: Processing-Driven Nucleation Mediated Control for Manufacturing of Phase-Pure Ferroelectric Hafnia

合作研究:美国-爱尔兰 R

基本信息

  • 批准号:
    2149487
  • 负责人:
  • 金额:
    $ 33.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

This award supports research that will develop new knowledge related to the manufacturing of electronic materials that will not form naturally, but that exhibit useful properties. The material studied in this effort is hafnium oxide, which can have a specific arrangement of atoms that results in a spontaneous electric charge separation that can be changed with application of a sufficient voltage. This functionality is useful for future generations of low power computing and computer memory. This particular hafnium oxide structure is challenging to prepare and often contains regions with other atomic arrangements that do not exhibit the useful spontaneous charge separation property. This award will support fundamental research to provide the knowledge needed to directly and completely form the hafnium oxide structure of interest. This new process will overcome the challenges of structural purity that have hindered mass production of hafnium oxide-based computer memory devices and enable development of new computing elements that consume less power. Low power devices are needed to reduce the overall energy consumption related to computing. This will directly impact the US economy, national security, and society by enabling the development and manufacture of new microelectronic technologies that lead to new functionality and less energy consumption. This project involves researchers in the United States, the Republic of Ireland, and Northern Ireland, representing several disciplines, including materials science, electron and scanning probe microscopies, and physics. The multi-disciplinary and multi-national team will develop educational outreach materials and present them to students in economically disadvantaged areas to stimulate interest in science, technology, engineering, and mathematics and to show how science and engineering are global endeavors.The goal of this fundamental research project is to develop a scalable manufacturing method to prepare phase-pure ferroelectric hafnium oxide and hafnium zirconium oxide by atomic layer deposition. The project will utilize plasma-enhanced atomic layer deposition to prepare amorphous deposits of hafnium oxide and hafnium zirconium oxide. The impact of processing parameters on the amorphous structure and resulting phases will be characterized using X-ray Diffraction, Extended X-ray Absorption Fine Structure, Transmission Electron Microscopy, Electron Energy Loss Spectroscopy, Scanning Probe Microscopy, and electrical property measurements. The project will determine how amorphous structure bond length and atomic coordination impact the nucleating phase. By isolating the impact of atomic layer deposition process parameters on the amorphous structure and then determining how that leads to crystalline phase formation, a deterministic means to prepare phase-pure materials will result. The nano- and device-scale ferroelectric behavior will be quantified using advanced microscopies and the impact of phase impurities on material performance will be measured. The end result will be new knowledge of the impact of amorphous structure on crystallization of hafnium oxide-based materials and the impact of phase impurity on ferroelectric performance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持开发与电子材料制造相关的新知识的研究,这些材料不会自然形成,但具有有用的特性。这项工作中研究的材料是氧化铪,它可以具有特定的原子排列,从而导致自发的电荷分离,这种分离可以通过施加足够的电压来改变。此功能对于未来几代低功耗计算和计算机内存非常有用。这种特殊的氧化铪结构制备起来具有挑战性,并且通常包含具有其他原子排列的区域,而这些区域不表现出有用的自发电荷分离特性。该奖项将支持基础研究,以提供直接、完整地形成感兴趣的氧化铪结构所需的知识。这种新工艺将克服阻碍基于氧化铪的计算机存储设备大规模生产的结构纯度挑战,并能够开发功耗更低的新计算元件。需要低功耗设备来减少与计算相关的总体能耗。这将通过开发和制造新的微电子技术来直接影响美国的经济、国家安全和社会,从而带来新的功能和更少的能源消耗。该项目涉及美国、爱尔兰共和国和北爱尔兰的研究人员,代表多个学科,包括材料科学、电子和扫描探针显微镜以及物理学。多学科、跨国团队将开发教育推广材料,并将其呈现给经济贫困地区的学生,以激发他们对科学、技术、工程和数学的兴趣,并展示科学和工程如何成为全球性的事业。该项目的目标基础研究项目是开发一种可扩展的制造方法,通过原子层沉积制备相纯铁电氧化铪和氧化铪锆。该项目将利用等离子体增强原子层沉积来制备氧化铪和氧化铪锆的非晶态沉积物。将使用 X 射线衍射、扩展 X 射线吸收精细结构、透射电子显微镜、电子能量损失光谱、扫描探针显微镜和电性能测量来表征工艺参数对非晶结构和所得相的影响。该项目将确定非晶结构键长和原子配位如何影响成核相。通过隔离原子层沉积工艺参数对非晶结构的影响,然后确定如何导致晶相形成,将产生制备纯相材料的确定性方法。将使用先进的显微镜量化纳米和器件规模的铁电行为,并测量相杂质对材料性能的影响。最终结果将是关于非晶结构对氧化铪基材料结晶的影响以及相杂质对铁电性能的影响的新认识。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力评估进行评估,认为值得支持。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jon Ihlefeld其他文献

Jon Ihlefeld的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jon Ihlefeld', 18)}}的其他基金

Grain Boundary Orientation Impacts on Internal Resistance in Solid State Lithium Ion Conductors
晶界取向对固态锂离子导体内阻的影响
  • 批准号:
    2055042
  • 财政年份:
    2021
  • 资助金额:
    $ 33.53万
  • 项目类别:
    Standard Grant
EAGER: Chemical Order/Disorder Enabled Phononic Memory in PbSc0.5Ta0.5O3
EAGER:PbSc0.5Ta0.5O3 中的化学有序/无序启用声子记忆
  • 批准号:
    2006231
  • 财政年份:
    2019
  • 资助金额:
    $ 33.53万
  • 项目类别:
    Standard Grant

相似国自然基金

基于US介导硫酮氧化的早诊分子探针的制备与应用研究
  • 批准号:
    22377069
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
SRS: US-China: 基础设施促进城乡融合可持续发展的驱动机理与决策机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    300 万元
  • 项目类别:
人巨细胞病毒US31基因促进SLE患者巨噬细胞NFKB2活化的机制研究
  • 批准号:
    82001705
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
EEID:US-UK-China: 新发禽流感病毒的演进与生态传播动力学的前瞻性研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    450 万元
  • 项目类别:
OPN靶向相变型荧光分子探针在HCM心肌纤维化US/NIR多模态成像中的基础研究
  • 批准号:
    82001831
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: What Drives the Most Extreme Rainstorms in the Contiguous United States (US)?
合作研究:美国本土遭遇最极端暴雨的原因是什么?
  • 批准号:
    2337381
  • 财政年份:
    2024
  • 资助金额:
    $ 33.53万
  • 项目类别:
    Standard Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
  • 批准号:
    2309022
  • 财政年份:
    2024
  • 资助金额:
    $ 33.53万
  • 项目类别:
    Standard Grant
Collaborative Research: What Drives the Most Extreme Rainstorms in the Contiguous United States (US)?
合作研究:美国本土遭遇最极端暴雨的原因是什么?
  • 批准号:
    2337380
  • 财政年份:
    2024
  • 资助金额:
    $ 33.53万
  • 项目类别:
    Continuing Grant
Collaborative Research: US-Ireland R&D Partnership: Processing-Driven Nucleation Mediated Control for Manufacturing of Phase-Pure Ferroelectric Hafnia
合作研究:美国-爱尔兰 R
  • 批准号:
    2346484
  • 财政年份:
    2023
  • 资助金额:
    $ 33.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Priorities for Future US-led Physical Oceanography Fieldwork in the Sub-polar Southern Ocean
合作研究:会议:未来美国主导的副极地南大洋物理海洋学实地考察的优先事项
  • 批准号:
    2309312
  • 财政年份:
    2023
  • 资助金额:
    $ 33.53万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了