NCS-FO: Fully Wireless Flexible Electrical-Acoustic Implant for High-Resolution Neural Stimulation and Recording at Large Scale
NCS-FO:全无线柔性电声植入物,用于大规模高分辨率神经刺激和记录
基本信息
- 批准号:2219811
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Dynamic mapping of complex brain circuits by monitoring and modulating brain activity can enhance our understanding of brain functions and provide the promise of better treatment and prevention of different neurological disorders. Interfacing with the brain also has the potential to enhance our perceptual, motor, and cognitive capabilities, as well as to restore sensory and motor functions lost through injuries or diseases. The development of closed-loop neural interfaces with high-resolution recording and stimulation capabilities from the distributed neural circuits within the entire brain is still a grand challenge of neuroscience research. Current noninvasive neuromodulation techniques still suffer from poor spatial resolution ( 100-1000’s of mm3), while implantable methods with finer resolution only provide a limited coverage of 100-1000’s of neurons through highly invasive parenchymal implantation. This integrated research and education program enables minimally invasive ultrasound neuromodulation (and neural recording) of the brain with high spatial resolution ( 200 µm) at large scale (over the whole brain). This project will yield a unique building block for a comprehensive set of neural interfaces. It will open new opportunities in neuroscience with significant improvements in spatial resolution and coverage of the brain stimulation in animals. It will also have translational potential for clinical applications in humans, such as the treatment of neurological and psychiatric disorders and brain-machine interfaces. This project also includes an integrated outreach and educational component to impact K-12 teachers and students (particularly from underrepresented groups), minorities, and undergraduate and graduate students, and to develop an interdisciplinary workforce. This project will educate a broad audience (particularly women) in the science and applications of the research components and enhance their research skills through systematic troubleshooting activities. Graduate curriculums across different disciplines will also be transformed with related multidisciplinary projects and guest lectures.This project includes scientific research to investigate implantable ultrasound stimulation on a flexible platform (placed on the brain surface with no parenchymal penetration) to simultaneously provide high spatial resolution ( 200 µm) and broad coverage (over the whole brain) while dramatically reducing invasiveness. This multidisciplinary project, which brings together expertise in electrical and biomedical engineering as well as material, computer, and neuro science, is transformative in that it is potentially the only method that promises large-scale stimulation across distributed brain regions at different depths with high resolutions of 200 µm without parenchymal implantation, opening a new venue for understanding neural and cognitive systems at large temporal and spatial scales. The development of this technology builds upon investigators’ strength in circuits, wireless power, flexible technologies, thin-film ultrasound arrays, machine learning, and neural interfaces. The project pushes the limits of ultrasound neuromodulation by investigating a flexible, image-guided (with machine learning models), hybrid electrical-acoustic implantable system with the form factor of a thin flexible sheet (on the brain surface) for ultrasound stimulation (and electrophysiology recording). Three fundamental research gaps will be addressed. 1) For large-scale and high-resolution ultrasound beam focusing and steering, the optimal approach in scaling up the number of ultrasound elements and application-specific integrated circuit (ASIC) channels at high frequencies (e.g., 5 MHz) will be explored. To reduce the complexity, thin-film transistors on a flexible substrate will be leveraged to form a large two-dimensional ultrasound array with selectable one-dimensional arrays (e.g., 256-element) driven by only one ASIC. 2) Selectable thin-film ultrasound arrays with thin-film transistor switches on flexible substrate will be optimized to achieve high efficiency and high pressure output. 3) Imaging and machine learning models based on image sequence analysis will be developed to guide the ultrasound focused beam, considering the device flexibility (ultrasound elements’ orientation) and post-implantation effects. A system-level demonstration in benchtop and in vivo settings will establish the feasibility of this flexible implantable system.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
通过监测和调节大脑活动来动态绘制复杂的大脑回路可以增强我们对大脑功能的理解,并为更好地治疗和预防不同的神经系统疾病提供希望。与大脑的交互也有可能增强我们的感知、运动和认知能力。开发具有高分辨率记录和刺激能力的闭环神经接口仍然是神经科学研究的一个巨大挑战。 .目前无创神经调节技术仍然存在空间分辨率较差(100-1000 mm3)的问题,而具有更精细分辨率的植入方法仅通过高侵入性脑实质植入提供有限的 100-1000 个神经元覆盖,这种综合研究和教育计划可实现微创超声神经调节。大规模(整个大脑)高空间分辨率(200微米)的大脑(和神经记录)将产生一个独特的建筑。它将为神经科学带来新的机遇,显着提高动物大脑刺激的空间分辨率和覆盖范围,它还将在人类临床应用中具有转化潜力,例如神经系统疾病的治疗。该项目还包括一个综合的外展和教育部分,以影响 K-12 教师和学生(特别是来自代表性不足的群体)、少数族裔、本科生和研究生,并培养跨学科的教育队伍。广泛的受众跨学科的研究生课程也将通过相关的多学科项目和客座讲座进行转变。该项目包括调查植入式超声刺激的科学研究。在一个灵活的平台上(放置在大脑表面,无实质穿透),同时提供高空间分辨率(200微米)和广泛的覆盖范围(整个大脑),同时大大减少侵入性。这个多学科项目汇集了专业知识。在电气和生物医学工程以及材料、计算机和神经科学领域,它具有变革性,因为它可能是唯一一种能够以 200 µm 高分辨率在不同深度的分布式大脑区域进行大规模刺激而无需实质植入的方法,该项目的开发建立在研究人员在电路、无线电源、灵活技术、薄膜超声阵列、机器学习和神经接口方面的实力之上。通过研究一种灵活的、图像引导的(带有机器学习模型)、混合电声植入系统,该系统具有用于超声刺激(和电生理学记录)的薄柔性片(在大脑表面)的形状因子,从而突破了超声神经调节的极限将解决三个基本研究空白 1) 对于大规模和高分辨率超声波束聚焦和转向,扩大高频超声波元件和专用集成电路 (ASIC) 通道的数量的最佳方法。例如,5为了降低复杂性,将利用柔性基板上的薄膜晶体管来形成仅由一个 ASIC 驱动的具有可选一维阵列(例如 256 个元件)的大型二维超声阵列。 2) 将优化柔性基板上带有薄膜晶体管开关的可选薄膜超声阵列,以实现高效率和高压输出。 3) 将开发基于图像序列分析的成像和机器学习模型,以指导超声聚焦。考虑到设备的灵活性(超声元件的方向)和植入后的影响,在台式和体内环境中进行系统级演示将确定这种灵活的植入系统的可行性。该奖项反映了 NSF 的法定使命,并被认为是值得的。通过使用基金会的智力优势和更广泛的影响审查标准进行评估来获得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mehdi Kiani其他文献
Improving Health Monitoring of Construction Workers Using Physiological Data-Driven Techniques: An Ensemble Learning-Based Framework to Address Distributional Shifts
使用生理数据驱动技术改善建筑工人的健康监测:基于集成学习的框架来解决分配变化
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Amit Ojha;Yizhi Liu;Houtan Jebelli;Hunayu Cheng;Mehdi Kiani - 通讯作者:
Mehdi Kiani
Mehdi Kiani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mehdi Kiani', 18)}}的其他基金
High-Resolution Transcranial Ultrasound Neuromodulation at Large Scale
大规模高分辨率经颅超声神经调节
- 批准号:
2143557 - 财政年份:2022
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CAREER: All-Acoustic Image-Guided Implantable Microscopic Ultrasound Neuromodulation
职业:全声图像引导植入式显微超声神经调节
- 批准号:
1942839 - 财政年份:2020
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Towards Internet of Implantable Things: A Micro-Scale Magnetoelectric Intra-Body Communication Platform
迈向可植入物联网:微型磁电体内通信平台
- 批准号:
1904811 - 财政年份:2019
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Planning Grant: Engineering Research Center for Ubiquitous Wireless Power for a Healthy World (POWERHEALTH)
规划资助:健康世界无处不在的无线充电工程研究中心(POWERHEALTH)
- 批准号:
1936910 - 财政年份:2019
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
相似国自然基金
烟曲霉F1Fo-ATP合成酶β亚基在侵袭性曲霉病发生中的作用及机制研究
- 批准号:82304035
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
白念珠菌F1Fo-ATP合酶中创新药靶的识别与确认研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
ATP合酶FO亚基参与调控弓形虫ATP合成的分子机制
- 批准号:32202832
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GRACE-FO高精度姿态数据处理及其对时变重力场影响的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
顾及GRACE-FO极轨特性的高分辨率Mascon时变重力场建模理论与方法
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
相似海外基金
NCS-FO: Collaborative Research: Fully-passive and wireless multi-channel neural recording for chronic in-vivo studies in animals
NCS-FO:合作研究:用于动物慢性体内研究的全被动无线多通道神经记录
- 批准号:
1734851 - 财政年份:2017
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
NCS-FO: Collaborative Research: Fully-passive and wireless multi-channel neural recording for chronic in-vivo studies in animals
NCS-FO:合作研究:用于动物慢性体内研究的全被动无线多通道神经记录
- 批准号:
1763350 - 财政年份:2017
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
NCS-FO: Collaborative Research: Fully-passive and wireless multi-channel neural recording for chronic in-vivo studies in animals
NCS-FO:合作研究:用于动物慢性体内研究的全被动无线多通道神经记录
- 批准号:
1734806 - 财政年份:2017
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Software for Automatic Conversion of Professional Journals to Fully Accessible Fo
用于将专业期刊自动转换为完全可访问的 Fo 的软件
- 批准号:
7933453 - 财政年份:2008
- 资助金额:
$ 100万 - 项目类别:
Software for Automatic Conversion of Professional Journals to Fully Accessible Fo
用于将专业期刊自动转换为完全可访问的 Fo 的软件
- 批准号:
7404774 - 财政年份:2008
- 资助金额:
$ 100万 - 项目类别: