NRI: Addressing Safe Interaction Between Autonomous and Human-Driven Vehicles

NRI:解决自动驾驶和人类驾驶车辆之间的安全交互问题

基本信息

  • 批准号:
    2219761
  • 负责人:
  • 金额:
    $ 47.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2023-10-31
  • 项目状态:
    已结题

项目摘要

Connected and automated vehicles are robotic systems which exhibit significant levels of computational capability and physical complexity. They have the capacity to make contextually decisions independently, without human intervention, while they interact in a complex environment. The data and shared information through vehicle-to-everything communication are associated with significant technical challenges and gives rise to a new level of complexity in modeling and control. It is expected that connected and automated vehicles will gradually penetrate the market, interact with human-driven vehicles, and contend with vehicle-to-everything communication limitations, e.g., bandwidth, dropouts, errors, and delays. However, different penetration rates of connected and automated vehicles can significantly alter transportation efficiency and safety. This grant will synergistically integrate human-driving behavior with control theory and learning in developing data-driven approaches that will enable a transformative new functionality of connected and automated vehicles to interact with human-driven vehicles safely and efficiently. On the education front and outreach, the research is an excellent catalyst for motivating interest in science, technology, engineering, and mathematics disciplines. The outcome of this research will deliver new methods to address a fundamental gap between optimal trajectory planning of and safe-critical control in connected and automated vehicles. The researched framework is organized at the intersection of three interdependent dimensions, namely, human-driving behavior, control theory, and learning. The human-driving dimension will enhance our understanding on how human drivers will respond to different driving scenarios. The control theory dimension will create knowledge on the appropriate prescription functions that will yield the optimal decisions and planning of connected and automated vehicles with respect to human driving behavior. The learning dimension will create knowledge of how connected and automated vehicles can learn to adapt their decisions and planning in situations where they encounter different behavior from what they already know about human driving. Thus, this dimension will not only improve the robustness of connected and automated vehicles but also their operation range with respect to any different driving behavior that they might encounter. The expected outcome of this research will aim at making connected and automated vehicles to coordinate with human-driven vehicles to improve safety and reduce pollution, energy consumption, and travel delays.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
连接和自动化的车辆是机器人系统,具有显着水平的计算能力和物理复杂性。他们有能力在复杂的环境中进行互动时独立做出上下文决策。通过车辆到设施通信的数据和共享信息与重大的技术挑战有关,并在建模和控制方面带来了新的复杂程度。可以预期,连接和自动化的车辆将逐渐渗透到市场,与人类驱动的车辆相互作用,并与车辆到所有的通信限制,例如带宽,辍学,错误和延误。但是,连接和自动化车辆的不同渗透率可以显着改变运输效率和安全性。该赠款将协同将人类驾驶的行为与控制理论和学习在开发数据驱动的方法中结合起来,这将使连接和自动化车辆的变革性新功能能够安全有效地与人类驱动的车辆进行交互。在教育方面和外展上,这项研究是激励对科学,技术,工程和数学学科兴趣兴趣的极好催化剂。这项研究的结果将提供新的方法,以解决连接和自动化车辆的最佳轨迹计划与安全关键控制之间的基本差距。研究的框架是在三个相互依存维度的交集中组织的,即人类驾驶行为,控制理论和学习。人类驾驶维度将增强我们对人类驾驶员将如何应对不同驾驶情况的理解。控制理论维度将在适当的处方功能上创建知识,这些函数将对人类驾驶行为产生最佳决策和计划。学习维度将创造知识,了解连接和自动化的车辆如何在遇到与已经对人类驾驶的知识不同的行为不同的情况下改编他们的决策和计划。 因此,这个维度不仅将改善连接和自动化车辆的鲁棒性,而且还将相对于他们可能遇到的任何不同的驾驶行为的操作范围。这项研究的预期结果将旨在使连接和自动化的车辆与人类驱动的车辆协调,以提高安全性,减少污染,能源消耗和旅行延迟。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响来通过评估来支持的。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Separation of learning and control for cyber-physical systems
  • DOI:
    10.1016/j.automatica.2023.110912
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andreas A. Malikopoulos
  • 通讯作者:
    Andreas A. Malikopoulos
Optimal Weight Adaptation for Model Predictive Control of Connected and Automated Vehicles in Mixed Traffic with Bayesian Optimization
基于贝叶斯优化的混合交通中联网自动驾驶车辆模型预测控制的最优权重自适应
Constraint-Driven Optimal Control for Emergent Swarming and Predator Avoidance
紧急蜂群和躲避捕食者的约束驱动最优控制
Re-Routing Strategy of Connected and Automated Vehicles Considering Coordination at Intersections
  • DOI:
    10.23919/acc55779.2023.10156555
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heeseung Bang;Andreas A. Malikopoulos
  • 通讯作者:
    Heeseung Bang;Andreas A. Malikopoulos
A Research and Educational Robotic Testbed for Real-Time Control of Emerging Mobility Systems: From Theory to Scaled Experiments [Applications of Control]
  • DOI:
    10.1109/mcs.2022.3209056
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Behdad Chalaki;Logan E. Beaver;A. Mahbub;Heeseung Bang;Andreas A. Malikopoulos
  • 通讯作者:
    Behdad Chalaki;Logan E. Beaver;A. Mahbub;Heeseung Bang;Andreas A. Malikopoulos
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andreas Malikopoulos其他文献

Andreas Malikopoulos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andreas Malikopoulos', 18)}}的其他基金

Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
  • 批准号:
    2401007
  • 财政年份:
    2023
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Standard Grant
NRI: Addressing Safe Interaction Between Autonomous and Human-Driven Vehicles
NRI:解决自动驾驶和人类驾驶车辆之间的安全交互问题
  • 批准号:
    2348381
  • 财政年份:
    2023
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
  • 批准号:
    2149520
  • 财政年份:
    2022
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Standard Grant

相似国自然基金

基于电驱动可寻址微孔阵列芯片构建单细胞空间外泌体组技术的研究
  • 批准号:
    82372357
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于新型可寻址面阵X射线源的术中放疗关键问题研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于新型可寻址面阵X射线源的术中放疗关键问题研究
  • 批准号:
    82272131
  • 批准年份:
    2022
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
面向多种糖尿病生物标志物联合检测的硅基光寻址电位型生物传感器阵列研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
纳米阵列可控制备及可寻址自校准的单芯片多通道光电免疫传感应用研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
  • 批准号:
    10097944
  • 财政年份:
    2024
  • 资助金额:
    $ 47.58万
  • 项目类别:
    EU-Funded
Addressing Disparities in Pain Management among Veterans: A Decision Tool to Support Preference-Based Safe Prescribing and Treatment Decisions in Primary Care
解决退伍军人疼痛管理方面的差异:支持初级保健中基于偏好的安全处方和治疗决策的决策工具
  • 批准号:
    10640628
  • 财政年份:
    2023
  • 资助金额:
    $ 47.58万
  • 项目类别:
NRI: Addressing Safe Interaction Between Autonomous and Human-Driven Vehicles
NRI:解决自动驾驶和人类驾驶车辆之间的安全交互问题
  • 批准号:
    2348381
  • 财政年份:
    2023
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Standard Grant
MATCHES: Making Telehealth Delivery of Cancer Care at Home Effective and Safe - Addressing missing data in the MATCHES study to improve ML/AI readiness
MATCHES:使远程医疗在家中有效且安全地提供癌症护理 - 解决 MATCHES 研究中缺失的数据,以提高 ML/AI 的准备情况
  • 批准号:
    10842906
  • 财政年份:
    2022
  • 资助金额:
    $ 47.58万
  • 项目类别:
BrightSpace: Designing a Roadmap for Effective and Sustainable Strategies for Assessing and Addressing the Challenges of EU Agriculture to Navigate within a Safe and Just Operating Space
BrightSpace:设计有效和可持续战略的路线图,以评估和应对欧盟农业的挑战,以在安全和公正的运营空间内航行
  • 批准号:
    10047415
  • 财政年份:
    2022
  • 资助金额:
    $ 47.58万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了