Collaborative Research: Microscopic Mechanism of Surface Oxide Formation in Multi-Principal Element Alloys

合作研究:多主元合金表面氧化物形成的微观机制

基本信息

  • 批准号:
    2219489
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARYMulti-principal element alloys (MPEAs) are compositionally complex alloys consisting of five or more elements in relatively equal proportions. Certain MPEAs have demonstrated superior mechanical properties (e.g., hardness, strength) unattainable from traditional alloys, making them ideal for high temperature applications (e.g., gas turbine blades and surface coatings for reentry vehicles). Incidentally, degradation by oxidation is a critical material challenge that must still be overcome to improve performance in such applications. Due to the complex compositional combinations, making oxidation resistant MPEAs is nontrivial. In this project, composition-processing-structure-property relationships for oxidation-resistant MPEAs are established through state-of-the-art experimental characterizations and computer simulations, guided by an artificial intelligence (AI) assisted innovative data-adaptive discovery strategy. Fundamentally, the oxidation mechanism¬ from the atomic to micro-meter scale is studied through both experimental discovery and machine learning embedded within a materials design and surface engineering framework. The results of this project enable an advanced materials paradigm for the discovery and creation of oxidation resistant MPEAs applicable for high temperature operations. TECHNICAL SUMMARYMulti-principal element alloys (MPEAs) are concentrated random solid-solutions typically consisting of five or more elements in significant proportions. While the remarkable mechanical properties (e.g., hardness, or strength) of certain MPEAs have encouraged their potential use for components operating at high temperatures such as those found in gas turbine blades or surface coatings for reentry vehicles. At the operation conditions for such components, degradation by oxidation remains a critical materials challenge. Consequently, during synthesis of oxidation resistant MPEAs, the versatility in elemental compositions for these complex alloys translates to an extensive range of possible oxidation products, many with poor resistance to the penetration of oxygen into the bulk alloy. To address this challenge and explore the associated enormous composition-processing-structure-property landscape, the oxidation mechanism¬ from atomic scale oxygen chemisorption to micro-meter oxide scale formation are studied by an innovative and experimentally validated data-guided adaptive approach. A surface engineering paradigm for the synthesis and processing of MPEAs with improved oxidation resistance are being developed. Central to the proposed framework are four research developments: (1) MPEA Concept Exploration; (2) Surface Engineering & Atomic Characterization; (3) Density Functional Theory Calculations; and (4) Adaptive Discovery. The results of this research are expected to have significant economic impact on society through innovations in surface-engineered MPEAs across a wide range of industries such as energy, hypersonic applications, defense and healthcare. This timely research lies within the domains of fundamental materials physics, predictive synthesis, and data science and offers unique collaborative and interdisciplinary research and training experiences for researchers across the fields of surface physics, material science, data analytics, and computational materials. Research is integrated with education through cross-university teaching and assessment, exchange-visits and co-advised student training coupled with technology innovation and entrepreneurial experiences. In this project, PIs also actively engage with programs for pre-college women and underrepresented minority students to encourage them to pursue STEM careers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要多权元素合金(MPEA)是由相对比例相对比例的五个或更多元素组成的合成合金。某些MPEA表现出了传统合金无法获得的优越的机械性能(例如,硬度,强度),使其非常适合高温应用(例如,燃气轮机叶片和重新进入车辆的表面涂料)。顺便说一句,氧化降解是一个关键的物质挑战,必须克服以提高此类应用中的性能。由于复杂的组成组合,使抗氧化的MPEA是不平凡的。在这个项目中,在人工智能(AI)辅助创新的数据自动发现策略的指导下,通过最先进的实验性特征和计算机模拟建立了抗氧化MPEA的组成处理结构 - 特性关系。从根本上讲,通过实验发现和机器学习嵌入了材料设计和表面工程框架中的实验发现和机器学习,研究了从原子到微米量表的氧化机制。该项目的结果使高级材料范式可以发现和创建适用于高温操作的耐氧化MPEAS。技术摘要元素元素合金(MPEA)是浓缩的随机固体,通常由五个或更多的元素组成,其比例很大。尽管某些MPEA的显着的机械性能(例如硬度或强度)鼓励它们潜在用于在高温下运行的组件,例如在燃气轮机叶片中发现的组件或用于重新进入车辆的表面涂料。在此类组件的运行条件下,氧化降解仍然是一个关键的物质挑战。因此,在合成抗氧化抗MPEA的过程中,这些复杂合金的元素组成中的多功能性转化为广泛的可能的氧化物产物,许多产品对氧气渗透到散装合金中的耐药性较差。为了应对这一挑战并探索相关的增强的组成过程结构 - 构成景观,通过创新且经过实验验证的数据指导的适应性方法研究了从原子量表氧化学吸收到微米氧化物量表形成的氧化物机制。正在开发用于合成和加工MPEA具有改善氧化耐药性的表面工程范式。拟议框架的核心是四个研究发展:(1)MPEA概念探索; (2)表面工程和原子表征; (3)密度功能理论计算; (4)自适应发现。预计这项研究的结果将通过在能源,高超音速应用,国防和医疗保健等各种行业的表面工程MPEA中的创新对社会产生重大的经济影响。这项及时的研究在于基本材料物理,预测合成以及数据科学领域,并为整个地表物理学,材料科学,数据分析和计算材料领域的研究人员提供了独特的协作和跨学科研究和培训经验。通过跨大学教学和评估,交流访问和共同审议的学生培训以及技术创新和企业家经验,将研究与教育融为一体。在该项目中,PI还积极参与预科妇女和代表性不足的少数族裔学生的计划,以鼓励她们从事STEM职业。该奖项反映了NSF的法定使命,并被认为是通过基金会的知识分子的智力优点和更广泛的影响来通过评估来支持的珍贵。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei Chen其他文献

Injective resolutions and derived 2-functors in ( R -2-Mod)
( R -2-Mod) 中的单射解析和导出 2-函子
  • DOI:
    10.1360/012010-840
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fang Huang;Shaohan Chen;Wei Chen;Zhu
  • 通讯作者:
    Zhu
Structure of the Cumulene Carbene Butatrienylidene: H2CCCC
积烯卡宾丁三烯叉的结构:H2CCCC
  • DOI:
    10.1006/jmsp.1996.0225
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    M. Travers;Wei Chen;S. Novick;J. Vrtilek;C. Gottlieb;P. Thaddeus
  • 通讯作者:
    P. Thaddeus
Tensile deformation behavior of high strength anti-seismic steel with multi-phase microstructure
多相组织高强抗震钢的拉伸变形行为
Phase transition and thermoelastic behavior of cadmium sulfide at high pressure and high temperature
硫化镉高压高温下的相变和热弹性行为
  • DOI:
    10.1016/j.jallcom.2018.02.021
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Bo Li;Jingui Xu;Wei Chen;Dawei Fan;Yunqian Kuang;Zhilin Ye;Wenge Zhou;Hongsen Xie
  • 通讯作者:
    Hongsen Xie
Dynamic Reluctance Mesh Modeling and Losses Evaluation of Permanent Magnet Traction Motor
永磁牵引电机动态磁阻网格建模及损耗评估
  • DOI:
    10.1109/tmag.2017.2659800
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Xiaoyan Huang;Minchen Zhu;Wei Chen;Jian Zhang;Youtong Fang
  • 通讯作者:
    Youtong Fang

Wei Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wei Chen', 18)}}的其他基金

CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    2415119
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: EAGER: SSMCDAT2023: Data-driven Predictive Understanding of Oxidation Resistance in High-Entropy Alloy Nanoparticles
合作研究:EAGER:SSMCDAT2023:数据驱动的高熵合金纳米颗粒抗氧化性预测理解
  • 批准号:
    2334385
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
BRITE Fellow: AI-Enabled Discovery and Design of Programmable Material Systems
BRITE 研究员:人工智能支持的可编程材料系统的发现和设计
  • 批准号:
    2227641
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
  • 批准号:
    2404816
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: A Hierarchical Multidimensional Network-based Approach for Multi-Competitor Product Design
协作研究:基于分层多维网络的多竞争对手产品设计方法
  • 批准号:
    2005661
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    1945380
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
  • 批准号:
    1940114
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Framework: Data: HDR: Nanocomposites to Metamaterials: A Knowledge Graph Framework
合作研究:框架:数据:HDR:纳米复合材料到超材料:知识图框架
  • 批准号:
    1835782
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
RUI: Poly (vinyl alcohol) Thin Film Dewetting by Controlled Directional Drying
RUI:通过受控定向干燥进行聚(乙烯醇)薄膜去湿
  • 批准号:
    1807186
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Concurrent Design of Quasi-Random Nanostructured Material Systems (NMS) and Nanofabrication Processes using Spectral Density Function
合作研究:使用谱密度函数并行设计准随机纳米结构材料系统(NMS)和纳米制造工艺
  • 批准号:
    1662435
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

铁基122相超导薄膜的制备、调控和原位扫描隧道显微镜研究
  • 批准号:
    12304164
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
快速高温扫描隧道显微镜技术及应用其研究二维二氧化硅的表面结构动力学过程
  • 批准号:
    22372053
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
部分相干数字全息三维层析显微成像方法研究
  • 批准号:
    62335018
  • 批准年份:
    2023
  • 资助金额:
    232.00 万元
  • 项目类别:
    重点项目
靶向分子超声定位显微镜对肝衰竭微循环障碍和炎症可视化及治疗的实验研究
  • 批准号:
    82302222
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于超声定位显微镜技术的2型糖尿病病程可视化研究
  • 批准号:
    82371968
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Harnessing PET to Study the In Vivo Fate and Health Effects of Micro- and Nanoplastics
利用 PET 研究微塑料和纳米塑料的体内命运和健康影响
  • 批准号:
    10890903
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
Harnessing PET to Study the In Vivo Fate and Health Effects of Micro- and Nanoplastics
利用 PET 研究微塑料和纳米塑料的体内命运和健康影响
  • 批准号:
    10426972
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
Collaborative Research: Microscopic Mechanism of Surface Oxide Formation in Multi-Principal Element Alloys
合作研究:多主元合金表面氧化物形成的微观机制
  • 批准号:
    2219416
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Molecular mechanisms of Gram-negative outer membrane organization
革兰氏阴性外膜组织的分子机制
  • 批准号:
    10065759
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
South Carolina COBRE in Oxidants, Redox Balance and Stress Signaling
南卡罗来纳州 COBRE 在氧化剂、氧化还原平衡和压力信号方面的作用
  • 批准号:
    10798895
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了