Collaborative Research: Mantle dynamics and plate tectonics constrained by converted and reflected seismic wave imaging beneath hotspots

合作研究:热点下方转换和反射地震波成像约束的地幔动力学和板块构造

基本信息

项目摘要

Since its formation billions of years ago, Earth has been slowly cooling via convection, where warmer material rises to the surface and cold tectonic plates plunge deep into the interior. Understanding this process is important for a wide range of problems, such as determining the factors that drive plate tectonics to sustaining deep water and carbon cycles that stabilize the atmosphere/hydrosphere and climate throughout Earth history. This is particularly relevant for society, both because plate tectonic processes are the driving forces behind hazards such as earthquakes and volcanoes and also because our climate and atmosphere make Earth habitable. This project studies large scale convection in the solid Earth by using earthquake data recorded at distant seismic stations in regions of upwelling. Upwellings are notoriously difficult to constrain. The focus will be on three end-member cases: 1) Hawaii, the classic example where deep upwelling occurs beneath ocean lithosphere, 2) Yellowstone, the classic example of deep upwelling that occurs beneath a continent, and 3) the equatorial mid-Atlantic Ridge, which is typically assumed to be a location without deep upwellings. The project will use classic techniques and also some newly developed approaches to better constrain the scale of the upwellings and their pathways. An outreach program will increase diversity in the Earth Sciences via public engagement and education and training of students and early career researchers. The outreach portion includes visits to core discipline classrooms at Morgan State University, a historically black university, with an established connection with two faculty members there. The goal of the visits and the materials is to increase awareness of career possibilities and also the societal relevance of the Earth Sciences. The approach is modeled on the success of the "Google in Residence" program that successfully placed Google engineers on HBCU campuses. Eventually a wider range of Earth scientists will be included by developing an archive of materials that can be scaled and adapted according to needs and also best-practice advice, both of which will be made publicly available to the broader scientific community. The project also provides training for undergraduate students, a graduate student, and a post doc in cutting-edge methodologies and use of seafloor seismic data. Earth’s convective system is important for understanding the evolution of the planet, including everything from the factors that drive and enable plate tectonics to sustaining deep water and carbon cycles that stabilize the atmosphere/hydrosphere and climate over billions of years. It is generally accepted that cool mantle sinks back into the Earth, e.g., at subduction zones, and hot mantle rises, e.g., beneath hotspots and mid ocean ridges. Although mantle tomography has resolved many seismically fast anomalies associated with subduction, imaging upwellings has proven more challenging, potentially because seismic waveforms have difficulty resolving thin slow conduits. Thus, the exact dimensions, locations, characteristics, origin depths and magnitudes of these thermal anomalies are poorly known, as well as their chemical and physical interaction with the surrounding mantle, such as in the transition zone and uppermost mantle. Similarly, the degree to which upwellings change in size and/or are deflected during their ascent and how they vary among tectonic environments is uncertain. Converted and reflected wave imaging of the transition zone discontinuities and the lithosphere-asthenosphere boundary should provide tighter constraints. However, there are some discrepancies in studies using these methods regarding hotspot character and location, perhaps because they have used different methodologies and approaches with different sensitivities in different locations. This study will examine this issue systematically at a varied suite of tectonic environments. The planned approach will use the complementary sensitives of converted and reflected seismic phases to image the lithosphere-asthenosphere boundary and transition zone discontinuities beneath three key regions that are representative of the range of tectonic environments where variability in upwelling characteristics might be expected. These include the iconic hotspot of Hawaii near the center of an old oceanic plate, the classic example of Yellowstone hotspot beneath a continental interior, and finally the mid-Atlantic Ridge where deep upwellings are not predicted by classic models. Analyses will include P-to-S imaging of the transition zone discontinuities and S-to-P imaging of the lithosphere-asthenosphere boundary, both sensitive to vertical changes in shear wave velocity, and also use S-reflections, which have the added advantage of high depth resolution. A systematic approach will allow comparisons among the regions and anisotropic testing and F-K full-waveform modelling will be performed to determine the influence of anisotropy and/or focussing/defocussing for any apparent discrepancies. Once a full range of possibilities is defined from the seismic waveforms, inversions for Earth properties based on experimental and ab initio constraints will determine the properties that can explain the observations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自数十亿年前形成以来,地球一直通过对流缓慢冷却,其中较温暖的物质上升到表面,而冷的构造板块深入内部,了​​解这一过程对于许多问题都很重要,例如确定影响因素。推动板块构造维持深水和碳循环,从而稳定整个地球历史中的大气/水圈和气候,这对于社会尤其重要,因为板块构造过程是地震和火山等灾害背后的驱动力。因为我们的气候和大气使地球适合居住。该项目通过使用在上升流区域的遥远地震站记录的地震数据来研究固体地球中的大规模对流,重点是三个端元情况。 :1) 夏威夷,海洋岩石圈下方发生深层上升流的经典例子,2) 黄石公园,大陆下方发生深层上升流的经典例子,3) 赤道大西洋中脊,该项目通常被认为是没有深层上升流的位置,该项目将使用经典技术和一些新开发的方法来更好地限制上升流的规模及其路径。外展部分包括参观摩根州立大学的核心学科教室,这是一所历史悠久的黑人大学,与那里的两名教职人员建立了联系。访问和材料的目的是提高认识。职业可能性以及地球的社会相关性该方法以“Google in Residence”计划的成功为蓝本,该计划成功地将 Google 工程师安置在 HBCU 校园中,最终将通过开发可扩展和适应的材料档案来纳入更广泛的地球科学家。需求和最佳实践建议,这两者都将向更广泛的科学界公开提供,该项目还为本科生、研究生和博士后提供有关海底地震数据的前沿方法和使用的培训。 .地球的对流系统对于理解地球的演化非常重要,包括从驱动和促成板块构造的因素到维持数十亿年来稳定大气/水圈和气候的深水和碳循环的一切。人们普遍认为,凉爽的地幔。尽管地幔断层扫描已经解决了许多与地震相关的快速异常,但地幔会沉入地球,例如在俯冲带,而热地幔会上升,例如在热点和大洋中脊下方。俯冲、上升流成像已被证明更具挑战性,可能是因为地震波形难以解析薄慢管道,因此,这些热异常的确切尺寸、位置、特征、起源深度和强度以及它们的化学和物理相互作用知之甚少。与周围的地幔(例如过渡带和上地幔)类似,上升流在上升过程中的大小变化和/或偏转程度以及它们在构造环境中的变化方式是不同的。过渡带不连续性和岩石圈-软流圈边界的转换波和反射波成像应该提供更严格的约束,但是,使用这些方法对热点特征和位置进行的研究存在一些差异,这可能是因为它们使用了不同的方法和方法。这项研究将在不同的构造环境中系统地研究这个问题,计划的方法将使用转换和反射地震相位的互补敏感性来成像。三个关键区域下方的岩石圈-软流圈边界和过渡带不连续性代表了可能出现上升流特征变化的构造环境范围,其中包括夏威夷靠近旧海洋板块中心的标志性热点,这是典型的例子。大陆内部下方的黄石热点,最后是大西洋中脊,经典模型无法预测深层上升流,分析将包括过渡带的 P-S 成像。岩石圈-软流圈边界的不连续性和 S-to-P 成像,都对剪切波速度的垂直变化敏感,并且还使用 S 反射,这具有高深度分辨率的额外优势。一旦定义了全部可能性,将进行区域和各向异性测试以及 F-K 全波​​形建模,以确定各向异性和/或聚焦/散焦对任何明显差异的影响。基于实验和从头算约束的地球特性的地震波形、反演将反映可以解释观测结果的特性。该奖项是 NSF 的法定使命,并且通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Shearer其他文献

On the frequency dependence and spatial coherence of PKP precursor amplitudes
PKP前驱振幅的频率依赖性和空间相干性

Peter Shearer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Shearer', 18)}}的其他基金

Seismological Investigations of Earthquakes and Deep Earth Structure
地震和地球深层结构的地震学研究
  • 批准号:
    2123529
  • 财政年份:
    2021
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Continuing Grant
III: Medium: Collaborative Research: Scaling Time Series Analytics to Massive Seismology Datasets
III:媒介:协作研究:将时间序列分析扩展到海量地震数据集
  • 批准号:
    2104240
  • 财政年份:
    2021
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Continuing Grant
III: Medium: Collaborative Research: Scaling Time Series Analytics to Massive Seismology Datasets
III:媒介:协作研究:将时间序列分析扩展到海量地震数据集
  • 批准号:
    2104240
  • 财政年份:
    2021
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Continuing Grant
Collaborative Research: Time Dependence of Seismic Parameters in Hawaii
合作研究:夏威夷地震参数的时间依赖性
  • 批准号:
    1925629
  • 财政年份:
    2019
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Time Dependence of Seismic Parameters in Hawaii
合作研究:夏威夷地震参数的时间依赖性
  • 批准号:
    1925629
  • 财政年份:
    2019
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Imaging Upper-Mantle Structure under USArray using Long - Period Reflection Seismology
利用长周期反射地震学在 USArray 下对上地幔结构进行成像
  • 批准号:
    1829601
  • 财政年份:
    2018
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Seismological Investigations of Earthquakes and Deep Earth Structure
地震和地球深层结构的地震学研究
  • 批准号:
    1620251
  • 财政年份:
    2016
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Continuing Grant
Analysis of Seismic Data from the USArray Project to Determine Crust and Uppermost Mantle Structure Beneath the United States
分析 USArray 项目的地震数据以确定美国下方的地壳和上地幔结构
  • 批准号:
    1358510
  • 财政年份:
    2014
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Characterizing fault zones at Kilauea and Mauna Loa volcanoes by large-scale mapping of earthquake stress drops and high precision locations
合作研究:通过地震应力降的大比例尺绘图和高精度位置来表征基拉韦厄火山和莫纳罗亚火山的断层带
  • 批准号:
    1045035
  • 财政年份:
    2011
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Seismological Investigations of Earthquakes and Deep Earth Structure
地震和地球深层结构的地震学研究
  • 批准号:
    1111111
  • 财政年份:
    2011
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Continuing Grant

相似国自然基金

马里亚纳弧前不同产状橄榄岩属性及地幔楔演化过程研究
  • 批准号:
    42372072
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
桐柏-红安造山带地壳上地幔横波速度结构研究
  • 批准号:
    42374057
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
地幔柱-洋脊相互作用的Zn同位素研究:以南太平洋超级隆起区Pukapuka海脊和东太平洋洋隆13-23°S玄武岩为例
  • 批准号:
    42306058
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
洋中脊玄武岩和近洋脊海山玄武岩的锌同位素组成与地幔不均一性研究
  • 批准号:
    42376051
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
阿拉斯加地幔过渡带的地震波速各向异性及其动力学成因研究
  • 批准号:
    42304071
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: As above so below: Quantifying the role of simultaneous LLSVPs and continents on Earth's cooling history using numerical simulations of mantle convection
合作研究:如上所述,如下:使用地幔对流数值模拟来量化同时发生的 LLSVP 和大陆对地球冷却历史的作用
  • 批准号:
    2310325
  • 财政年份:
    2023
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Testing the timing and direction of mantle exhumation at the Iberia-Newfoundland margins with low-temperature thermochronology
合作研究:用低温热年代学测试伊比利亚-纽芬兰边缘地幔折返的时间和方向
  • 批准号:
    2405731
  • 财政年份:
    2023
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Effects of ferric iron on heat transport in Earth's mantle
合作研究:三价铁对地幔热传输的影响
  • 批准号:
    2310829
  • 财政年份:
    2023
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
  • 批准号:
    2246686
  • 财政年份:
    2023
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
  • 批准号:
    2246687
  • 财政年份:
    2023
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了