Collaborative Proposal: Harvesting electronic flat bands and strong spin-orbit coupling for novel functionalities in metal monochalcogenides
合作提案:收获电子平带和强自旋轨道耦合以实现金属单硫属化物的新功能
基本信息
- 批准号:2219048
- 负责人:
- 金额:$ 29.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL DESCRIPTIONMaterials made from a single atomic layer or a few layers have electronic properties that profoundly differ from those of bulk materials. For example, two-dimensional materials can combine high mechanical strength and optical transparency with efficient charge transport. These properties could be exploited to create new classes of devices with novel functionalities. One could make a material that could become electrically conducting or insulating, but also magnetic or non-magnetic, at the flip of a switch. Such a material could enable development of ultra-sensitive optical or magnetic sensors. This research project will focus on one class of ultrathin materials—metal monochalcogenides such as gallium selenide or gallium sulfide. Researchers will investigate these materials and seek to endow them with specific electrical, magnetic, and optical properties upon exfoliation, encapsulation and twisting. This research will be integrated with the mentoring and training of the next generation of physicists, materials scientists, and engineers. Both team members actively recruit and mentor undergraduate and graduate students from underrepresented groups, while also reaching out to high school teachers and students. The team collaborates with the National High Magnetic Field Laboratory at Florida State University to develop hands-on instructional materials for schools in the surrounding North Florida counties.TECHNICAL DESCRIPTIONThe goal of this collaborative project is to harness the electronic flat bands and strong spin-orbit coupling (SOC) inherent to the family of the III-VI metal monochalcogenides (MMCs), to achieve gate-tunable ferromagnetism and half-metallicity, fractional quantum Hall (QH) states in the limit of large SOC. The work will enable novel spintronic, valleytronic and optoelectronic devices. Investigators will: i) explore, tune, and understand the nature of the fractional quantum Hall states in the regime of large SOC, which has implications for topological quantum computation; ii) achieve gate-tunable ferromagnetism due to half-metallicity and their interplay with other possible correlated states (such as possible superconductivity and correlated phases ) in hole-doped few-layer MMCs; iii) create spin- and valley-polarized currents in heterostructures based on metal monochalcogenides on transition metal dichalcogenides, and iv) achieve gate-tunable excitonics in MMCheterostructures with moiré superlattices, for optoelectronics with an unprecedented level of tunability. This project will directly support one graduate student at each participating institutions. The students will circulate among both institutions and other national facilities. In addition, both principal investigators will continue their established efforts at mentoring undergraduate and high school students, while also recruiting and mentoring students from underrepresented groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述由单原子层或几层制成的材料具有与块状材料截然不同的电子特性,例如,二维材料可以将高机械强度和光学透明度与有效的电荷传输结合起来。人们可以利用这种材料来创造具有新颖功能的新型设备,这种材料可以在按下开关时变得导电或绝缘,也可以具有磁性或非磁性。该研究项目将重点研究一类超薄材料——金属单硫族化物,例如硒化镓或硫化镓,研究人员将研究这些材料,并寻求赋予它们特定的电、磁和光学特性。这项研究将与下一代物理学家、材料科学家和工程师的指导和培训相结合,两个团队成员都积极招募和指导本科生和研究生。该团队与佛罗里达州立大学国家高磁场实验室合作,为北佛罗里达州周边县的学校开发实践教学材料。技术描述本次合作的目标。该项目的目的是利用 III-VI 族金属单硫属化物 (MMC) 家族固有的电子平带和强自旋轨道耦合 (SOC),以实现栅极可调铁磁性和大型 SOC 极限下的半金属性、分数量子霍尔 (QH) 态这项工作将使新型自旋电子、谷电子和光电器件成为可能: i) 探索、调整和理解分数量子霍尔态的性质。大型 SOC 的状态,这对拓扑量子计算具有影响;ii) 由于半金属性及其与其他可能的相关状态(例如可能的状态)的相互作用,实现门可调谐铁磁性;超导和相关相)在空穴掺杂的几层MMC中;iii)在基于过渡金属二硫属化物的金属单硫属化物的异质结构中产生自旋和谷极化电流,以及iv)在具有莫尔超晶格的MMC异质结构中实现栅极可调激子,该项目将直接支持每个参与机构的一名研究生。此外,两位主要研究人员将继续其指导本科生和高中生的既定努力,同时招募和指导来自代表性不足群体的学生。该奖项反映了 NSF 的法定使命,并被视为值得通过使用基金会的智力优点和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum Hall effect in a two-dimensional semiconductor with large spin-orbit coupling
具有大自旋轨道耦合的二维半导体中的量子霍尔效应
- DOI:10.1103/physrevb.106.045307
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:Shcherbakov, D.;Yang, Jiawei;Memaran, Shahriar;Watanabe, Kenji;Taniguchi, Takashi;Smirnov, Dmitry;Balicas, Luis;Lau, Chun Ning
- 通讯作者:Lau, Chun Ning
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chun Ning Lau其他文献
Chun Ning Lau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chun Ning Lau', 18)}}的其他基金
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
- 批准号:
2324032 - 财政年份:2023
- 资助金额:
$ 29.74万 - 项目类别:
Standard Grant
Gate-tunable spin devices based on Spin-orbitronic Engineering in Two-Dimensional Metal Monochalcogenides.
基于二维金属单硫属化物中的自旋轨道电子工程的栅极可调自旋器件。
- 批准号:
2128945 - 财政年份:2021
- 资助金额:
$ 29.74万 - 项目类别:
Standard Grant
DMREF Collaborative Research: Establishing the platform of quasi-one-dimensional topological insulators with emergent functionalities
DMREF协同研究:建立具有突发功能的准一维拓扑绝缘体平台
- 批准号:
1922076 - 财政年份:2019
- 资助金额:
$ 29.74万 - 项目类别:
Standard Grant
Collaborative Proposal: Quest for an Electric field-Induced Half-Metallic State in Metal Monochalcogenides
合作提案:寻找金属单硫族化物中电场诱导的半金属态
- 批准号:
1807928 - 财政年份:2018
- 资助金额:
$ 29.74万 - 项目类别:
Standard Grant
Collaborative Research: Graphene-Based THz Photodetectors
合作研究:基于石墨烯的太赫兹光电探测器
- 批准号:
0926056 - 财政年份:2009
- 资助金额:
$ 29.74万 - 项目类别:
Standard Grant
CAREER: Quantum Transport of Charges in Graphene
职业:石墨烯中电荷的量子传输
- 批准号:
0748910 - 财政年份:2008
- 资助金额:
$ 29.74万 - 项目类别:
Continuing Grant
相似国自然基金
指向提议者的共情关怀对第三方惩罚行为的影响:心理、脑与计算机制
- 批准号:32371102
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
经济博弈中提议者对先前第三方干预者的分配公平性研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于深度层次特征相似性度量的视觉跟踪方法研究
- 批准号:61773397
- 批准年份:2017
- 资助金额:65.0 万元
- 项目类别:面上项目
构造类型专家系统及其开发工具的研究
- 批准号:68875006
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
RESEARCH PROPOSAL What is your project title? Development of additive manufactured polymeric seals for low molecular weight gases
研究计划 您的项目名称是什么?
- 批准号:
2908868 - 财政年份:2024
- 资助金额:
$ 29.74万 - 项目类别:
Studentship
Development of a low-pressure loss air purification device using rotating porous media and a proposal for its use in ventilation systems
使用旋转多孔介质的低压损失空气净化装置的开发及其在通风系统中的使用建议
- 批准号:
24K17404 - 财政年份:2024
- 资助金额:
$ 29.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Proposal Title : NemeSys - Smart Multiphasic Nanoreactors Based On Tailored Foams for Direct H2O2 Synthesis
提案标题:NemeSys - 基于定制泡沫的智能多相纳米反应器,用于直接合成 H2O2
- 批准号:
EP/Y034392/1 - 财政年份:2024
- 资助金额:
$ 29.74万 - 项目类别:
Research Grant
Conference: Supporting Mentoring in STEM Graduate Education: A Proposal for Virtual Workshops and Supporting Activities
会议:支持 STEM 研究生教育辅导:虚拟研讨会和支持活动的提案
- 批准号:
2413980 - 财政年份:2024
- 资助金额:
$ 29.74万 - 项目类别:
Standard Grant
Collaborative Research: Time-Sharing Experiments for the Social Sciences (TESS): Proposal for Renewed Support, 2020-2023
合作研究:社会科学分时实验(TESS):2020-2023 年更新支持提案
- 批准号:
2424057 - 财政年份:2024
- 资助金额:
$ 29.74万 - 项目类别:
Continuing Grant